Secure Execution

Lecture 10

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Secure Execution

= ARM TrustZone
= Memory Attributes
= Bus Attributes

= Trusted Firmware

= QTP

Security Extension

ARM TrustZone

Bibliography
for this section

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

= Chapter 7 - TrustZone support in the memory system
= Section 7.1 - Overview

» Section 7.2 - SAU and IDAU

= Section 7.5 - Memory protection controller and peripheral protection controller

Raspberry Pi Ltd, RP2350 Datasheet

= Chapter 10 - Security

m Section 10.2 - Processor Security Features (Arm)

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Secure Execution Mode

two execution modes

= Secure

= unprivileged (user)

= privileged (supervisor)
= NonSecure

= unprivileged (user)

= privileged (supervisor)
memory attributes

» each bus transfer has an

attribute label

secure gates

/ Processor

Application Application ‘ Application
User Mode
Supervisor Mode

Operating System

g
9

User Mode

Secure Mode

Secure Gate

Y

E4:

Security
Attribution Unit
(SAV)

Transfer
Firewall

Label
Transfer

Implementation

Defined Attribution
Unit (IDAU)

Secure MPU

x3
= 0
c
ES

KK

Memory Attributes

each memory region is labeled with one of the attributes

Type

Secure

Non Secure
Callable

NonSecure

Exempt

Symbol Description

NSC

NS

can be accessed only by code running in secure mode

code running in non-secure mode can make function calls
into it with some restrictions

any code running in any mode can access it

any code running in any mode can access it (with no
execution)

bus transfers are labeled base upon the execution mode and memory attribute

Transfer
Attribute

secure

non-secure

non-secure

executing code
mode

Implementation Defined Attribution Unit (IDAU)

hard wired by the microcontroller’s manufacturer

RP2350’s IDAU setup

Start Address End Address
0x00000000 0Ox000042ff
0x00004300 0Ox00007dff
0x00007e00 Ox00007fff
0x10000000 Ox1fffffff
0x20000000 Ox20081fff
0x40000000 Ox4fffffff
Ox50000000 OXSfffffff
Oxd000voo Oxdfffffff

Region

Arm boot
USB/RISC-V boot
BootROM SGs
XIP

SRAM

APB

AHB

SIO

Access

Exempt

Non-secure (instruction fetch), Exempt (load/store)

Secure and Non-secure-Callable

Non-secure
Non-secure
Exempt
Exempt

Exempt

Security Attribution Unit (SAU)

software defined

4 SAU

Enable
\ 4 \ 4

\

)

‘ ALLNS] {[Base Address]} [Limit

e o]
J

= allows the definition of maximum 8 memory regions

= regions cannot overlap

e

= regions have access permissions (similar to rwx)

region_size = 32 x N

base_address = 32 x N

/ Address Space \

Region 3

Region 2

Secure

Region 0

S —)

~ NonSecure

Ai_ NonSecure

Callable

_J

NonSecure

} NonSecure

Address Attribute Resolution

NonSecure
Yes

Callable

N

IDAU or SAU
NonSecure
Callable

IDAU or SAU
Secure

No

IDAU Lookup
Memory IDAU
Address Exempted
SAU Lookup

Attributes from IDAU and SAU are merged, using the most restrictive.

The Bus

secured

1. Memory Controller asks for
data transfer or instruction
fetch

2. IDAU and SAU determine
the access attributes

3. External Bus Routes the
request
1. MPC for RAM or Flash
2. Secure Aware Peripheral
3. PPC for Non Secure

Aware peripherals

Processor

Internal
BUS

0xe000_0000

0xd000_0000

Cortex-M
Registers

N

Processors
(cores)

Mapping Table

Base Address

0x0000_0000

Length
2 MB

I 0x2000_0000 I 128 KB

0x4000_0000

/ Address Space
i RP2040 - 4GB
N Sec”’e] GPIO]
' \Aware
e YN
—> UART]
PPC > SPI]
i/ S
—> RAM
AN
MPC | !
—i) Flash
N N ETELIrEIrrrrrrd

0x4000_0000

0x2000_0000

0x0000_0000

Memory Protection Controller (MPC)

optional - depends on vendor

RAM and Flash are aliased - they both appear at two
different addresses

= one alias defined (in IDAU and SAU) as NonSecure

= one alias defined as Secure
RAM and Flash are split in pages

= usually 256 Bor 512 B

= each page is defined as NonSecure or Secure

The two aliases have page holes in them.

K Flash Storage \
4 N
Non-Secure
(Alias)

N %
4 N
Non-Secure
(Alias)

& %
RAM
Non-Secure
(Alias)

Non-Secure
(Alias)

Peripherals

0x0000,-0600

} Flash

[) seawe [nonseare

OXFFFF_FFFFR

— A A A A j

Peripheral Protection Unit

protects peripherals that are not secure aware
optional - depends on vendor

Each peripheral is marked as NonSecure or Secure.
= this includes interrupts that are fired

may be implemented similar to the MPC

PPC

' GPIO / pin] S /NS
ADC x ‘S/NS
PWM x \S/NS
SPI x] S /NS
USB x] S/NS

Switching modes

Calling Secure API from Non Secure code

= Secure code’s compiler defines a secure gateway entry point in NonSecure Callable memory for every
function that can be called from Non Secure

= NonSecure code calls the secure gateway entry point for the API
= the instruction there has to be SG
= the next instruction is the call to the actual API function

= Secure code returns using the BXNS instruction

BL secure_code_gatewayA{ Secure Gate }\/
—
SG
B secure_code
\ /\‘{ Secure Code
BXNS LR

NonSecure Code

Switching modes

Calling NonSecure functions from Secure code

= Secure code calls the Non Secure function using BLXNS

= the processor stacks the return address (linked address) and jumps to the function

= NonSecure code returns using the BX FNC_RETURN instruction

= FNC_RETURN is avaluein LR when the function starts

BLX FNC_RETURN

_— Secure Code

NonSecure Code «—BLXNS

BLX secure_code

Secure Execution in Rust

unstable feature, use nightly version

Define a function that can be called from Non Secure code

#1[feature(cmse_nonsecure_entry) |

#[no_mangle]]

#[cmse_nonsecure_entry |

pub extern "C" fn entry_function(v: u32) -> u32 {
v + 6

3
Limitations

= parameters can only be sent via registers, non secure code has no access to the secure stack

= uses C ABI

Secure Execution in Rust

unstable feature, use nightly version

Call a Non Secure function

1 #1[feature(abi_c_cmse_nonsecure_call)]
2 #1[no_std]
3
4 unsafe extern "C-cmse-nonsecure-call' non_secure_function(u8, ul6, u32) -> £32;
5
6 fn run() {
7 unsafe { non_secure_function(l, 100, 300) };
8 3}
Limitations

= parameters should only be sent via registers, secure code should not access the non-secure stack
= uses C ABI

Boot

Enable TrustZone

Setup and Setup and Setup and Run & Switch to

Enable SAU Enable MPC Enable PPC Secure Software NonSecure
——Secure API

Secure
Mode

Run Only
Secure Software

The processor starts in Secure mode

If it enables SAU it can switch to NonSecure mode

Trusted Firmware

Bibliography
for this section

Raspberry Pi Ltd, RP2350 Datasheet

= Chapter 10 - Security
» Section 10.1 - Overview (Arm)

= Chapter 13- OTP

ARM, Trusted Firmware-M Documentation

» [ntroduction
» Getting Started

= Security

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://trustedfirmware-m.readthedocs.io/en/latest/index.html#

Trusted Firmware-M

what it does

m Secure Boot
= Secure Update
m Secure API

Requires

= ARM microcontrollers that provide TrustZone
= Examples

= STM32L5, STM32U5

= RP2350

Secure Firmware / Bootloader

provided by the vendor

Depends on the MCU

= implements the TF-M standard (Trusted Firmware - Cortex M)
= certificationlevels 1-3
= Level 1: Software-based isolation; foundational crypto, attestation, and secure boot.
= Level 2: Adds protection against non-invasive attacks.
= Level 3: Adds protection against side-channel and invasive attacks; often requires hardware features like

tamper detection and secure key storage.

ARM TF-M Reference Implementation

open source

Non-secure Processing Environment (NSPE)

Secure Processing Environment (SPE)

PSA Crypto APls

~

Crypto
PSA Attestation APIs
Initial Attestation
Platform

Isolation Boundary

Trusted Firmware-M

TF-M Core (IPC, SPM, Interrupt Handling)

Secure Boot

1 I 1
1 1
a1~ o)
A TAHEAHE AR R
a @ R N o 2
< 8o C 2 2 2|8 &
Apps AL w [o |) D < 5w
PP % n.ﬂtéﬂl w1 wn gm ﬂ#':
< 9 = 1 = 2 =G =
[T R m©
A ExZ2 2 2ligsIRED
5 < 1| < o E g S
=i 1 I = =e
Network Middleware W<l ___ ' _ _1___ — |)
o
<T
(¥a]
(a1

RTOS TBSA-M HAL

/

HAL

1 TBSA-M Hardware

PSA Root of Trust (PSA-RoT)
(Secure Privileged
Domain)

Application Root of Trust
(ARoT)

- PSA Developer APIs

- Hardware Abstraction Layer

STM32 Implementation

Provided in SDK

Nonsecure user application
(Unprivileged)

Crypto
Attestation
Platform

[++]
&
T 5
E®
Dy
=]
=
w
B

Example code
Example code testing

access to
secure/privileged areas

using TFM features

Privkey IAT infos

PSA APls

via PSA APIs

c
=]
S
o
@
i
E
=
@
w
=

Secure RAM

IAT infos

[TF-M Core (SPM...)] TFM_sBSFU_Boot &

ylomawell W-41

(Immutable / Unprivileged)

Standalone UART loader

(Immutable code / Hidden protect area)

PSA RoT - Trusted / Privileged

Flash memory Firmware Fixed entry
| Storage area download Secure storage Internal trusted storage point at reset
| (Read/Write) area =lizz) area

Nonsecure ﬁ Secure

RP2350

= provides a ROM bootloader:

Secure Boot
Secure Update
Try-before-you-by
A/B partitioning
Rollback

Public Key Infrastructure

key pair

= private key 4
= public key &

= algorithms

= Rivest-Shamir-Adleman (RSA)
= Elliptic Curves (ECS)

= hashing function

= SHA 256

Bob
Hello
I —
Alice! P
+ Alice's
public key
6EB69570
08E03CE4
Alice +
i =
4— D t
Alice! eCryP

Alice's

private key

Digital Signatures

needs a key pair (RSA or ECS) and a hashing algorithm

Signing Signer

1. data is hashed &/ Data
2 i i

. the hash is encrypted using

the private key
3. the encrypted hash is

added to the data
Verifying é
1. data iS haShed Digitally Signed

Document

2. the encrypted hash is
decrypted using the public
key

(=]

AlgHsrThm » s ENCTYPTION ey RRRN(OJ0I0} 0]
Hash O-n Digitally Signed
Private Key Document
Hash o
—_—
Algorithm . _ Verifier

Signature is valid

Hash when hash values

are equal.
—_——————— Decryption —

Hash

Public Key

Signed Firmware

The firmware contains a digital signature

®m _vector_table
= _start block and .end_block

= _text and .data

Internal Boot Loader

Y S
Show USB
BOOTSEL RINE
t Pressed Search =1
5] Start Block between
@x1000_0000 - Not Verified
@0x1000_4000 ST e
Digital Signature qymr—
Load
Firmware

RP2350 has a bootloader that knows how to securely boot, other chips need custom secure

firmware

Interrupt Vector

.vector_table

Code and Data

Flash Storage

« J _J G A __ A A

[0x000 I Initial Stack Address
[0x004 I Reset Handler
[0x008 I NMI Handler
[0x00c I HardFault Handler
[0x02¢c I SVC Handler
[0x038 I PendSV
0x03c SysTick Handler
0x040 ISR 0
0x044 ISR 1
0x110 ISR 51
0x114 Start Block
0x13c
Code
.text
Data

.rodata & .data

['/ Digital Signature

l

End Block

J

%

Jump to
panic
handler

Jump when
IRQ 1 fires .

*drawing is not at scale, code and data are significantly greater than the interrupt vector

OTP

one time programmable

OTP

flash memory that can be programmed only once

Usually has three lock levels

» Read/Write - works as normal flash
= Read Only - works as ROM

= Inaccessible - cannot be accessed
The lock is not reversible

Different vendors have different naming for these levels

%@
Information in OTP 5

Stores information that:

should not be modifiable

= should not be read from the outside using a debugger or using Non Secure software that reads and sends the

information

e ™

= Secure Boot Enabled oTP
Pages
= Debug in Secure mode Enabled \
0 Secure Boot | Debug S | Debug NS

= Debug in NonSecure mode Enabled)
- Bootloader’s puth keys 1 Boot Key 1 Boot Key 2 Boot Key 3 |
= Bootloader’s public keys 2 |
= OTP’s Pages Lock Level
= OTP’s (read) key n Lock Level OTP Key Debug Key]
= Debug key \ J

m Secure Access Permissions

Provisioning Devices

how to securely provision a new device for production

Digitally Sign))) i
Generate a Write Secure Write Public Key Enable Secure Disable Secure
. the Secure . Lock OTP
key pair . Firmware to OTP Boot Debug
Firmware

= Generate a different key pair for every device

= store the private key securely
= Disabling debugging in secure mode will prevent any debugger from reading the OTP with the stored key
= Locking the OTP will prevent any writes to the key
= Enabling Secure Boot will prevent any unsigned Secure Firmware update
= NonSecure debug is still available, but it cannot replace the Secure Firmware

= Flashing NonSecure firmware is still possible

Decommissioning Devices

= Add the capability to the Secure firmware to increase the Lock Level to OTP

» this will render OTP unusable

= the system will not boot anymore as it cannot read the public keys

= Some OTP memories allow reversing locks:

= they erase all the OTP
= they erase the whole Flash

This prevents reading the keys and secure firmware as secure debug becomes available

Use Cases

= POS devices
= payment software should not be tempered with
= Smart Cards
= keys should never be read from the device
= software in these devices should not be tampered with

= JavaCard (applets are uploadable)

Conclusion

= ARM TrustZone
= Memory Attributes
= Bus Attributes

= Trusted Firmware

= OTP

