
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Secure Execution
Lecture 10

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Secure Execution

ARM TrustZone

Memory Attributes

Bus Attributes

Trusted Firmware

OTP

Security Extension
ARM TrustZone

Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

Chapter 7 - TrustZone support in the memory system

Section 7.1 - Overview

Section 7.2 - SAU and IDAU

Section 7.5 - Memory protection controller and peripheral protection controller

Raspberry Pi Ltd, RP2350 Datasheet

Chapter 10 - Security

Section 10.2 - Processor Security Features (Arm)

for this section

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Secure Execution Mode

two execution modes

Secure

unprivileged (user)

privileged (supervisor)

NonSecure

unprivileged (user)

privileged (supervisor)

memory attributes

each bus transfer has an

attribute label

secure gates

Processor

Application Application Application

User Mode

MPU

Secure Mode

Supervisor Mode

User Mode

 Secure Framework

Secure Application Secure Application

Secure Gate

Secure MPU

Supervisor Mode

Reset
Handler

R
/W

/X

Tr

an
sf

er

S

ec
A

dd
r

P
ay

lo
ad

Configures
Operating System

Configures

BUS
Security

Attribution Unit
(SAU)

Implementation
Defined Attribution

Unit (IDAU)

Transfer
Firewall

Label
Transfer

Memory Attributes

Type Symbol Description
Transfer

Attribute

Secure S can be accessed only by code running in secure mode secure

Non Secure

Callable
NSC

code running in non-secure mode can make function calls

into it with some restrictions
non-secure

NonSecure NS any code running in any mode can access it non-secure

Exempt E
any code running in any mode can access it (with no

execution)

executing code

mode

bus transfers are labeled base upon the execution mode and memory attribute

each memory region is labeled with one of the attributes

Implementation Defined Attribution Unit (IDAU)

RP2350’s IDAU setup

Start Address End Address Region Access

0x00000000 0x000042ff Arm boot Exempt

0x00004300 0x00007dff USB/RISC-V boot Non-secure (instruction fetch), Exempt (load/store)

0x00007e00 0x00007fff BootROM SGs Secure and Non-secure-Callable

0x10000000 0x1fffffff XIP Non-secure

0x20000000 0x20081fff SRAM Non-secure

0x40000000 0x4fffffff APB Exempt

0x50000000 0x5fffffff AHB Exempt

0xd0000000 0xdfffffff SIO Exempt

hard wired by the microcontroller’s manufacturer

Security Attribution Unit (SAU)

Enable

ALLNS

SAU

Region

Limit

NSC EN

Base Address

allows the definition of maximum 8 memory regions

regions cannot overlap

regions have access permissions (similar to rwx) Secure

Address Space

Region 2

Region 3

Region 1

Region 0 NonSecure

NonSecure

NonSecure
Callable

NonSecure

software defined

region_size = 32 × N

base_address = 32 × N

Address Attribute Resolution

No

Yes

Yes

No

Yes

No

Memory
Address

IDAU Lookup

SAU Lookup

IDAU
Exempted

IDAU or SAU
Secure

IDAU or SAU
NonSecure

Callable

Exempt

Secure

NonSecure
Callable

NonSecure

Attributes from IDAU and SAU are merged, using the most restrictive.

The Bus

1. Memory Controller asks for

data transfer or instruction

fetch

2. IDAU and SAU determine

the access attributes

3. External Bus Routes the

request

1. MPC for RAM or Flash

2. Secure Aware Peripheral

3. PPC for Non Secure

Aware peripherals

RAM

Flash

BUS

Flash 0x0000_0000 2 MB

RAM 0x2000_0000 128 KB

GPIO 0x4000_0000 ...

Base Address Length

Mapping Table

Address Space
RP2040 - 4GB

0x0000_0000

0x2000_0000

 GPIO

UART

SPI

Secure
Aware

0x4000_0000

Processor

Internal
BUS

Cortex-M
RegistersMemory

Unit

0xe000_0000

Processors
(cores)

SIO
Registers

0xd000_0000

MPC

PPC

secured

Memory Protection Controller (MPC)

optional - depends on vendor

RAM and Flash are aliased - they both appear at two

different addresses

one alias defined (in IDAU and SAU) as NonSecure

one alias defined as Secure

RAM and Flash are split in pages

usually 256 B or 512 B

each page is defined as NonSecure or Secure

The two aliases have page holes in them.

Flash Storage

RAM

Flash

RAM

Peripherals

0x0000_0000

0xFFFF_FFFF

Non-Secure
(Alias)

Non-Secure
(Alias)

Non-Secure
(Alias)

Non-Secure
(Alias)

Flash

Page n-1

Page 1

Page 0

Page 2

Page 3

Page 5

RAM

Page n-1

Page 1

Page 0

Page 2

Page 3

Page 5

Secure Non Secure

Peripheral Protection Unit

optional - depends on vendor

Each peripheral is marked as NonSecure or Secure.

this includes interrupts that are fired

may be implemented similar to the MPC

PPC

GPIO / pin S / NS

ADC x S / NS

PWM x S / NS

SPI x S / NS

USB x S / NS

protects peripherals that are not secure aware

Switching modes

Secure code’s compiler defines a secure gateway entry point in NonSecure Callable memory for every

function that can be called from Non Secure

NonSecure code calls the secure gateway entry point for the API

the instruction there has to be SG

the next instruction is the call to the actual API function

Secure code returns using the BXNS instruction

BL secure_code_gateway

!= SG

SG
B secure_code

BXNS LR

NonSecure Code

Secure Gate

Fault

Secure Code

Calling Secure API from Non Secure code

Switching modes

Secure code calls the Non Secure function using BLXNS

the processor stacks the return address (linked address) and jumps to the function

NonSecure code returns using the BX FNC_RETURN instruction

FNC_RETURN is a value in LR when the function starts

BLXNS

BLX FNC_RETURN

BLX secure_code

NonSecure Code

Fault

Secure Code

Calling NonSecure functions from Secure code

Secure Execution in Rust

Define a function that can be called from Non Secure code

Limitations

parameters can only be sent via registers, non secure code has no access to the secure stack

uses C ABI

unstable feature, use nightly version

1 #![feature(cmse_nonsecure_entry)]

2

3 #[no_mangle]

4 #[cmse_nonsecure_entry]

5 pub extern "C" fn entry_function(v: u32) -> u32 {

6 v + 6

7 }

Secure Execution in Rust

Call a Non Secure function

Limitations

parameters should only be sent via registers, secure code should not access the non-secure stack

uses C ABI

unstable feature, use nightly version

1 #![feature(abi_c_cmse_nonsecure_call)]

2 #![no_std]

3

4 unsafe extern "C-cmse-nonsecure-call" non_secure_function(u8, u16, u32) -> f32;

5

6 fn run() {

7 unsafe { non_secure_function(1, 100, 300) };

8 }

Boot
Enable TrustZone

BL

Secure API

PowerUp
Secure
Mode

Setup and
Enable SAU

Setup and
Enable MPC

Setup and
Enable PPC

Switch to
NonSecure

Run
Secure Software

Run Only
Secure Software

The processor starts in Secure mode

If it enables SAU it can switch to NonSecure mode

Trusted Firmware

Bibliography

Raspberry Pi Ltd, RP2350 Datasheet

Chapter 10 - Security

Section 10.1 - Overview (Arm)

Chapter 13 - OTP

ARM, Trusted Firmware-M Documentation

Introduction

Getting Started

Security

for this section

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://trustedfirmware-m.readthedocs.io/en/latest/index.html#

Trusted Firmware-M

Secure Boot

Secure Update

Secure API

Requires

ARM microcontrollers that provide TrustZone

Examples

STM32L5, STM32U5

RP2350

what it does

Secure Firmware / Bootloader

Depends on the MCU

implements the TF-M standard (Trusted Firmware - Cortex M)

certification levels 1 - 3

Level 1: Software-based isolation; foundational crypto, attestation, and secure boot.

Level 2: Adds protection against non-invasive attacks.

Level 3: Adds protection against side-channel and invasive attacks; often requires hardware features like

tamper detection and secure key storage.

provided by the vendor

ARM TF-M Reference Implementation
open source

STM32 Implementation
Provided in SDK

RP2350

provides a ROM bootloader:

Secure Boot

Secure Update

Try-before-you-by

A/B partitioning

Rollback

Public Key Infrastructure

key pair

private key 🔐

public key 🔓

algorithms

Rivest–Shamir–Adleman (RSA)

Elliptic Curves (ECS)

hashing function

SHA 256

Hello
Alice!

Alice's
private key

Encrypt

6EB69570
08E03CE4

Hello
Alice!

Decrypt

Alice's
public key

Alice

Bob

Digital Signatures

Signing

1. data is hashed

2. the hash is encrypted using

the private key

3. the encrypted hash is

added to the data

Verifying

1. data is hashed

2. the encrypted hash is

decrypted using the public

key

needs a key pair (RSA or ECS) and a hashing algorithm

Signed Firmware

.vector_table

.start_block and .end_block

.text and .data

Internal Boot Loader

Yes

NO

Error

Success

Not Verified

Verified

PowerUp
BOOTSEL
Pressed

Show USB
Drive

Search
Start Block between

@x1000_0000 -
@0x1000_4000 Verify

Digital Signature

Load
Firmware

RP2350 has a bootloader that knows how to securely boot, other chips need custom secure

firmware

Flash Storage

Initial Stack Address0x000

Reset Handler0x004

NMI Handler0x008

HardFault Handler0x00c

SVC Handler0x02c

PendSV0x038

SysTick Handler0x03c

ISR 00x040

ISR 10x044

ISR 510x110

Code
.text

Data
.rodata & .data

0x13c

Jump
to

main

Jump when
IRQ 1 fires

In
te

rr
up

t V
ec

to
r

.v
ec

to
r_

ta
bl

e
C

od
e

an
d

D
at

a

Jump to
panic

handler

* drawing is not at scale, code and data are significantly greater than the interrupt vector

Start Block0x114

End Block

🔐 Digital Signature

The firmware contains a digital signature

OTP
one time programmable

OTP

Usually has three lock levels

Read/Write - works as normal flash

Read Only - works as ROM

Inaccessible - cannot be accessed

The lock is not reversible

Different vendors have different naming for these levels

flash memory that can be programmed only once

Information in OTP

should not be modifiable

should not be read from the outside using a debugger or using Non Secure software that reads and sends the

information

Secure Boot Enabled

Debug in Secure mode Enabled

Debug in NonSecure mode Enabled

Bootloader’s public keys

Bootloader’s public keys

OTP’s Pages Lock Level

OTP’s (read) key

Debug key

Secure Access Permissions

OTP

Secure Boot Debug S Debug NS

Pages

Page 3Lock Level OTP Key Debug Key

Boot Key 1 Boot Key 2 Boot Key 3

0

1

2

n

Stores information that:

Provisioning Devices

Generate a
key pair

Digitally Sign
the Secure
Firmware

Write Secure
Firmware

Write Public Key
to OTP

Enable Secure
Boot

Disable Secure
Debug

Lock OTP

Generate a different key pair for every device

store the private key securely

Disabling debugging in secure mode will prevent any debugger from reading the OTP with the stored key

Locking the OTP will prevent any writes to the key

Enabling Secure Boot will prevent any unsigned Secure Firmware update

NonSecure debug is still available, but it cannot replace the Secure Firmware

Flashing NonSecure firmware is still possible

how to securely provision a new device for production

Decommissioning Devices

Add the capability to the Secure firmware to increase the Lock Level to OTP

this will render OTP unusable

the system will not boot anymore as it cannot read the public keys

Some OTP memories allow reversing locks:

they erase all the OTP

they erase the whole Flash

This prevents reading the keys and secure firmware as secure debug becomes available

Use Cases

POS devices

payment software should not be tempered with

Smart Cards

keys should never be read from the device

software in these devices should not be tampered with

JavaCard (applets are uploadable)

Conclusion

ARM TrustZone

Memory Attributes

Bus Attributes

Trusted Firmware

OTP

