
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Embedded Operating Systems
Lecture 10

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Embedded Operating Systems

The purpose of an operating system

Abstractions

System calls

Embedded Operating Systems

Real Time

Tock OS

usually called RTOS

Operating System
the purpose of and OS

Bibliography

Andrew Tanenbaum, Modern Operating Systems (4th edition)

Chapter 1 - Memory Management

Subchapter 1 - Introduction

Subchapter 1.1 - What is an operating system?

Subchapter 1.6 - System calls

Subchapter 1.7 - Operating system structure

for this section

Operating System

Allow Portability

provides a hardware independent API

applications should run on any hardware

Resources Management and Isolation

allow applications to access resources

prevent applications from accessing

hardware directly

isolate applications

Processor

1 2 3

4 5

Disk Drive

Application Application Application

Accelerator

1 2 3

4 5

Peripherals

Memory
User Mode

Supervisor Mode

Storage
Actions

Kernel

the main role

Desktop and Server
Operating Systems

Actions

process and threads

use the Processor and Accelerators (GPU,

Neural Engine, etc)

Data

everything is a file

peripherals are viewed as files (POSIX)

/sys/class/gpio/gpio5/direction

/sys/class/gpio/gpio5/value

Processor

1 2 3

4 5

Disk Drive

Application Application Application

Accelerator

1 2 3

4 5

Peripherals

Memory
User Mode

Supervisor Mode

File
Storage

Process
Actions

Kernel

abstractions

Embedded Operating
Systems
Actions

process or threads

use the Processor and Accelerators

(Crypto Engines, Neural Engine, etc)

Peripheral

provide a hardware independent API

prevent processes from accessing the

peripheral

usually the applications and the kernel are

compiled together into a single binary

Processor

Application

Accelerator

Memory
User Mode

Supervisor Mode

Actions

Kernel

Peripheral

ApplicationApplication

GPIO SPI

 I2C

 ADC

 PWM

Scheduling Type

Preemptive

processes can be suspended by the scheduler

a misbehaving process cannot stop the system

Cooperative

processes cannot be suspended by the kernel

a misbehaving process can stop the system

could a process stop the whole system?

Kernel Types

Monolothic

S
up

er
vi

so
r

U
se

r

App App App

Virtual Memory
Driver

Storage Driver

Network DriverVideo Driver File System
Driver

...

Kernel

Scheduler

all drivers in the kernel

Windows, Linux, MacOS

Microkernel

S
up

er
vi

so
r

U
se

r

App App App Network
Driver

Video
Driver

File System
Driver

...

Virtual Memory
Driver

Storage Driver

Kernel

Scheduler

IPC

all drivers are applications

Minix

Unikernel

S
up

er
vi

so
r

Single App

Virtual Memory
Driver

Storage Driver

Network DriverVideo Driver File System
Driver

...

Kernel

Threads
Scheduler

the kernel is bundled with all

the drivers and one single

application

Unikraft/Linux

Most of the microcontroller

RTOSes

from the kernel and drivers point of view

System Call

accessing a peripheral can be performed

only by the OS

The application:

1. puts values in the registers

2. triggers an exception

svc instruction for ARM

The OS:

1. looks at the registers and determines

what the required action is

2. performs the action

3. puts the return values into the registers

Application

Memory
User Mode

Supervisor Mode

Actions

Kernel

Stop Application

 Exception Handler

Peripheral

Processor

Registers
r0
r1

r2

mov r0, #10
svc
mov r0, #20the OS API

Registers

r0

r1

r2

Processor

Processing

add

sub

and

Exceptions

reset ()

supervisor ()

div0 ()

Memory

function reset () { ... }

function supervisor () { ... }

function div0 () { ... }

Embedded Operating Systems
aka Real-Time Operating Systems (RTOS)

Bibliography

Alexandru Radovici, Ioana Culic, Getting Started with Secure Embedded Systems

Chapter 2 - Embedded systems software development

for this section

Embedded Operating Systems

small OSes that run on microcontrollers

most of the times called Real Time OS (RTOS)

applications are similar to threads (are considered friendly)

the whole system is compiled into a single binary

similar to frameworks

Real Time?

real time means performing an action always in a deterministic amount of time

the amount of time can be large

low latency means that the amount if time must be small

The industry often uses real time interchangeably low latency.

upper bound

Most Used

OS Owner Description

FreeRTOS Amazon Oldest RTOS, heavily used in the industry.

SafeRTOS High Integrity Systems Certified for functional safety, based on FreeRTOS.

Zephyr Linux Foundation Linux’es little brother, has an API inspired by Linux, is getting traction.

Tock OS
An embedded operating system designed for running multiple concurrent, mutually distrustful applications on

low-memory and low-power microcontrollers.

Bibliography

Alexandru Radovici, Ioana Culic, Getting Started with Secure Embedded Systems

Chapter 3 - The Tock system architecture

for this section

Tock OS

A preemptive embedded OS (runs on MCUs)

Cortex-M

RISC-V

Uses memory protection (MPU required)

Has separate kernel and user space

most embedded OS have the one piece software philosophy

Runs untrusted apps in user space

Hybrid architecture

Kernel (and drivers) written in Rust

Apps written in C/C++ or Rust (any language that can be compiled)

an embedded operating systems that works like a desktop or server one

The Stack

Processes

compiled separately from the kernel

written in any language that compiles (C, Rust, …)

saved into the Tock Binary Format (TBF) / Tock Application Bundle (TAB)

compile
elf2tab

(.text .data .bss)

compile
elf2tab

(.text .data .bss)

compile
elf2tab

(.text .data .bss)

elf2tab

elf2tab

elf2tab

tockloader
(selects architecture)

Source

ELF file
cortex-m0+

TBF file
cortex-m0+

ELF file
cortex-m3

TBF file
cortex-m3

ELF file
architecture

TBF file
architecture

TAB file
Microcontroller

Flash

separate binaries

Tock Binary Format

headers about how to load the application

the binary code and data

credential footers

TBF Header

App Code
(text, data)

Padding

TBF File Format
(executable)

TBF Footer

Application Binary

Data

Required

TBF Header

TBF Header Base TLV Element TLV Element

0 16

TBF Header Base

Version Header Size

20 4

Total Size

8

Flags
Bit 0 - Enabled, Bit 1 - Sticky

Checksum
XOR each 4 bytes of header (excl. checksum)

8 12 16

TLV Element

Type Length Data

20 4 8

(a)

(b)

(c)

(d)

Main TLV Element

Type (1) Length (12)

20 4

Init Offset
Bytes after TBF Header where the app code starts

8

Protected Size
Bytes after TBF Header to make RO

Min RAM Size
Min bytes required by app

8 12 16

Writable Flash Region TLV Element

Type (2) Length (8)

20 4

Offset
Bytes from the beginning of the binary

8

Size
Number of writable bytes

8 12

Package Name TLV Element

Type (3) Length (n)

20 4

Package Name
Encoded using UTF-8

n

Fixed Address TLV Element

Type (5) Length (8)

20 4

RAM Address
The address where the app has to be loaded

8

Flash Address
The address in Flash where the app is stored

8 12

stores

Memory Layout

Kernel

is written in flash separated from the apps

loads each app at boot

Applications

each application TBF is written to the flash separately

each application has a separate

stack in RAM

grant section where the kernel stores data about the app

data section in RAM

Flash Storage

RP2040 Boot Loader
.boot_loader

* drawing is not at scale, TBF sections are at least as large as the App Data sections

RAM
Kernel Stack

Kernel Data

0x0000_0000

0xFFFF_FFFF

App TBF

Tock Kernel

App TBF

App TBF

App Stack

App Data

App Stack

App Data

App Stack

App Data

Grant

Grant

Grant

for the RP2040

Memory Layout

Kernel

sets up the MPU every time it switches to a process

Applications

can read and execute its code

can read and write its stack and data

can read and write the allocated heap

Applications are not allowed to access the kernel’s memory or the

peripherals.

Flash Storage

Interrupt Vector

Kernel Code
.text

Kernel Read Only Data
.rodata

RP2040 Boot Loader
.boot_loader

* drawing is not at scale, TBF sections are at least as large as the App Data sections

Kernel Data
.data

RAM
Kernel Stack

Kernel Data
.data

C
op

ie
d

at
 s

ta
rtu

p

0x0000_0000

0xFFFF_FFFF

Kernel .bss

App .text

App .rodata

App .data

Padding

TBF Header

A
pp

 T
B

F

C
op

ie
d

w
he

n
pr

oc
es

s
is

 in
iti

al
is

ed

App .data

App Stack

App .bss

Heap

Grant

A
pp

 M
em

or
y

App TBF

MPU Region(s)
R

MPU Region(s)
RW XN

for the RP2040 at runtime

Process States

Tock runs only on single core

Running state means the process is ready to run

Yielded means the process waits for an event (upcall)

start and stop are user commands

a process is stopped only if the user asked it

Application API

Tock provides two libraries:

libtock-c that is fully supported

libtock-rs that is in development ⚠

1. Due to a Rust compiler issue, Rust applications are not relocatable. This means that developers have to

know at compile time the load addresses for Flash and RAM. ↩

libraries

[1]

https://github.com./libtock-c
https://github.com./libtock-rs
https://github.com./libtock-rs/issues/28

Example Application (C)

1 #include <libtock-sync/services/alarm.h>

2 #include <libtock/interface/led.h>

3

4 int main(void) {

5 // Ask the kernel how many LEDs are on this board.

6 int num_leds;

7 int err = libtock_led_count(&num_leds);

8 if (err < 0) return err;

9

10 // Blink the LEDs in a binary count pattern and scale

11 // to the number of LEDs on the board.

12 for (int count = 0; ; count++) {

13 for (int i = 0; i < num_leds; i++) {

14 if (count & (1 << i)) {

15 libtock_led_on(i);

16 } else {

17 libtock_led_off(i);

18 }

19 }

20

21 // This delay uses an underlying alarm in the kernel.

22 libtocksync_alarm_delay_ms(250);

23 }

24 }

Example Application (Rust)

10 set_main! {main}

11 stack_size! {0x200}

1 //! A simple libtock-rs example. Just blinks all the LEDs.

2

3 #![no_main]

4 #![no_std]

5

6 use libtock::alarm::{Alarm, Milliseconds};

7 use libtock::leds::Leds;

8 use libtock::runtime::{set_main, stack_size};

9

12

13 fn main() {

14 if let Ok(leds_count) = Leds::count() {

15 loop {

16 for led_index in 0..leds_count {

17 let _ = Leds::toggle(led_index as u32);

18 }

19 Alarm::sleep_for(Milliseconds(250)).unwrap();

20 }

21 }

22 }

Faults

the kernel and apps can fault

a detailed debug message can be displayed

due to MPU usage Tock apps fault on:

trying to access memory outside its data

(includes peripheral access)

stack overflow

trying to perform privileged operations

---| Fault Status |---

Data Access Violation: true

Forced Hard Fault: true

Faulting Memory Address: 0x00000000

Fault Status Register (CFSR): 0x00000082

Hard Fault Status Register (HFSR): 0x40000000

---| App Status |---

App: crash_dummy - [Fault]

 Events Queued: 0 Syscall Count: 0 Dropped Callback Count

 Restart Count: 0

 Last Syscall: None

 ╔═══════════╤══╗
 ║ Address │ Region Name Used | Allocated (bytes) ║
 ╚0x20006000═╪══╝
 │ ▼ Grant 948 | 948
 0x20005C4C ┼───
 │ Unused
 0x200049F0 ┼───
 │ ▲ Heap 0 | 4700 S
 0x200049F0 ┼─── R
 │ Data 496 | 496 A
 0x20004800 ┼─── M
 │ ▼ Stack 72 | 2048
 0x200047B8 ┼───
 │ Unused
 0x20004000 ┴───

similar to segfaults

System Calls

0. Yield

1. Subscribe

2. Command

3. ReadWriteAllow

4. ReadOnlyAllow

5. Memop

6. Exit

7. UserspaceReadableAllow

Allow RW or RO
(optional)

Subscribe

Command

Yield

Buffer

yes

Callback Ran?
no Upcall

Run UpcallIs Yielded?
Yes

Postpone

No

UnAllow RW or RO
(optional)

Buffer

not usable by
the application

5: Memop

Arguments

op_type : An integer indicating whether this is a

brk (0), a sbrk (1), or another memop call.

argument : The argument to brk , sbrk , or

other call.

Each memop operation is specific and details of each

call can be found in the memop syscall documentation.

Return

Dependent on the particular memop call.

Memop expands the memory segment available to the process, allows the process to retrieve pointers to its

allocated memory space, provides a mechanism for the process to tell the kernel where its stack and heap start,

and other operations involving process memory.

memop(op_type: u32, argument: u32) -> [[VARIES]] as u32

https://github.com./tock/blob/master/doc/syscalls/memop.md

6: Exit

Return

None

The process signals the kernel that it has no more work to do and can be stopped or that it asks the kernel to

restart it.

tock_exit(completion_code: u32)

tock_restart(completion_code: u32)

2: Command

Arguments

driver : integer specifying which driver to use

command_number : the requested command.

argument1 : a command-specific argument

argument2 : a command-specific argument

One Tock convention with the Command system call is

that command number 0 will always return a value of 0

or greater if the driver is present.

Return

three u32 numbers

Errors

NODEVICE if driver does not refer to a valid

kernel driver.

NOSUPPORT if the driver exists but doesn’t

support the command_number .

Other return codes based on the specific driver.

Command instructs the driver to perform a specific action.

command(driver: u32, command_number: u32, argument1: u32, argument2: u32) -> CommandReturn

1: Subscribe

Arguments

driver : integer specifying which driver to use

subscribe_number : event number

upcall : function’s pointer to call upon event

void upcall(int arg1, int arg2, int arg3, void* userdata)

userdata : value that will be passed back, usually

a pointer

Return

The previously registered upcall or

TOCK_NULL_UPCALL

Errors

NODEVICE if driver does not refer to a valid

kernel driver.

NOSUPPORT if the driver exists but doesn’t

support the subscribe_number .

Subscribe assigns upcall functions to be executed in response to various events.

subscribe(driver: u32, subscribe_number: u32, upcall: u32, userdata: u32) -> Result<Upcall, (Upcall, ErrorCode)>

0: Yield

Return

yield: None

yield_no_wait:

1 - upcall ran

0 - there was no queued upcall function to execute

Yield transitions the current process from the Running to the Yielded state.

1 // waits for the next upcall

2 // The process will not execute again until another upcall re-schedules the

3 // process.

4 yield()

5

6 // does not wait for the next upcall

7 // If a process has no enqueued upcalls, the

8 // process immediately re-enters the Running state.

9 yield_no_wait()

Scheduler

Get Next Process

Yes

Is Running? Is Yielded? Has Scheduled
Upcalls?

Schedule

Is Faulted?

Restart Process Fault!

Systick
or

Kernel Task Done

No

No

Yes

Yes

No

Application

Kernel

Run Upcall

Set Running

how the scheduler works

Interrupt

handle_interruptCommand System
Call

Action Done?

Call Client

Return to Process

no yes

Launch Action

Setup Interrupt

Capsule

Kernel

how drivers work

using command, subscribe and yield

3 and 4: AllowRead(Write/Only)

Arguments

driver : integer specifying which driver to use

allow_number : driver-specific integer specifying

the purpose of this buffer

pointer : pointer to the buffer in the process

memory space

null pointer revokes a previously shared buffer

size : the length of the buffer

Return

The previous allowed buffer or NULL

Errors

NODEVICE if driver does not refer to a valid

kernel driver.

NOSUPPORT if the driver exists but doesn’t

support the allow_number .

INVAL the buffer referred to by pointer and

size lies completely or partially outside of the

processes addressable RAM.

Allow shares memory buffers between the kernel and application.

allow_readwrite(driver: u32, allow_number: u32, pointer: usize, size: u32) -> Result<ReadWriteAppSlice, (ReadWriteAppSlice,

allow_readonly(driver: u32, allow_number: u32, pointer: usize, size: u32) -> Result<ReadWriteAppSlice, (ReadWriteAppSlice,

System Call Pattern

1. allow: if data exchange is required, share a buffer

with a driver

2. subscribe to the action done event

3. send a command to ask the driver to start

performing an action

4. yield to wait for the action done event

the kernel calls a callback

verify if the expected event was triggered, if not

yield

5. unallow: get the buffer back from the driver

Allow RW or RO
(optional)

Subscribe

Command

Yield

Buffer

yes

Callback Ran?
no Upcall

Run UpcallIs Yielded?
Yes

Postpone

No

UnAllow RW or RO
(optional)

Buffer

not usable by
the application

Conclusion

The purpose of an operating system

Abstractions

System calls

Embedded Operating Systems

Real Time

Tock OS

we talked about

