
Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.

Memory Protection
Lecture 9

https://wyliodrin.com/

Memory Protection
Memory Protection Unit

Memory Management Unit

Memory Protection
ARM: MPU, RISC-V: PMP

Bibliography

Joseph Yiu, The De�nitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, 2nd Edition

Chapter 12 - Memory Protection Unit

for this section

Memory Protection

restricts access to physical memory

uses physical addresses

The processor works in three modes:

machine mode (optional) - used at boot,

allows access to everything

supervisor mode - restricts access to some

registers and accesses memory through

Memory Protection EL2 (if machine mode

exists)

user mode - allows only ALU and memory

access through Memory Protection

memory access de�ned region by region

Processor

Hypervisor (Virtual Machine Monitor)

Operating System

Application Application Application

Operating System

Machine Mode (optional)

Supervisor Mode

User Mode

Memory

word 0

word 1

Region 1

word 2

word 3

Region 2

R
eg

io
n

3

Configures

optional

Memory Protection
EL1

Configures
optional

Memory Protection
EL2

(optional)

Memory Protection

MPU for RP2040

handler mode - no restrictions - used while

executing ISRs and Exception Handlers

thread mode

privileged no restrictions - usually used for the

operating system

unprivileged mode - allows only ALU and

memory access through Memory Protection - used

for applications

MPU allows 8 regions

each region has up to 8 subregions

permissions R W X

Cortex-M0+ works in three modes

RP2040 (Core 1)

Application Application Application

Operating System / Bare Metal Framework

Privileged Mode

Unprivileged Mode

Memory

word 0

word 1

Region 1

word 2

word 3

Region 2

R
eg

io
n

3

``````

RP2040 (Core 2)

Configures

optional

MPU

Memory Protection



Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XN

allows the de�nition of memory regions

regions can overlap, highest region number takes priority

regions have access permissions (similar to rwx)

Cortex-M MPU

region_size = min(256, 2 )size

base_address = region_size ×N

Region -1
(if PRIV Enable)

Address Space

Region 2

Region 3

Region 1

Region 0 Region 0
Permissions

Region 1
Permissions

Region 2
Permissions

Region 3
Permissions



Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XN

AP Access Protection

XN eXecute Never

faults if MCU has to read the next instruction from

an XN region

Access Protection

AP Privileged Mode Unprivileged Mode

000 No Access No Access

001 Read/Write No Access

010 Read/Write Read only

011 Read/Write Read/Write

100 Do not use Do not use

101 Read only No Access

110 Read only Read only

111 Read/Write Read only



Subregions
each region is divided in 8 subregion

each bit in Subregion Disable  disables a subregion

a disabled subregion triggers a fault if accessed

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XN

Address Space

Region 0
with none
subregions
disabled

Region 1
with some
subregions
disabled

Subregion 0

Subregion 1

Subregion 2

Subregion 3

Subregion 4

Subregion 5

Subregion 7

Subregion 6



Subregions’ Usage

a 5K region is not allowed (5K is not a power of 2)

use two 4K regions back to back

disable 6 of the subregions (subregion is 512B)

improve granularity

region_size = min(256, 2 )size

base_address = region_size ×N

subregion_size =  

8
region_size

Data (5K)

D
at

a 
(5

K
)

Region 0
no
subregion
disabled

Region 1
with 6
subregions
disabled

Address Space



Memory Layout

Flash
Code - read and execute

.rodata - constants - read only

.data - in �ash - initialized global variables

is copied to RAM at startup by the init  function

should not be accessed after startup

RAM
stack - read and write

usually protected by unaccessible memory before and after

.data - in RAM - global variables - read and write

.bss - global variables (not initialized or initialized to 0 ) - read and write

protection

Flash Storage

Initial Stack Address

Exceptions & Interrupts

Code
.text

Read Only Data
.rodata

RP2040 Boot Loader
.boot_loader

* drawing is not at scale, code and data are significantly greater than the interrupt vector

Data
.data

RAM

Stack

Data
.data

C
op

ie
d 

at
 s

ta
rt

up

Region
2
(RW
XN)

Region
0 
(R)

Region
1 
(R XN)

Peripherals

UART Region
3
(RW
XN)GPIO

0x0000_0000

0xFFFF_FFFF

.bss

subregion disabled



Memory Management
MMU



Bibliography

1. Andrew Tanenbaum, Modern Operating Systems (4th edition)

Chapter 3 - Memory Management

Subchapter 3.3 - Virtual Memory

2. Philipp Oppermann, Writing an OS in Rust

Introduction to Paging

Paging Implementation

for this section

https://os.phil-opp.com/
https://os.phil-opp.com/paging-introduction/
https://os.phil-opp.com/paging-implementation/


Memory Management

uses logical addresses

translates to physical addresses

The processor works in at least two modes:

supervisor mode

restricts access to some registers

accesses virtual addresses through Memory

Protection (if machine mode exists)

user mode

allows only ALU and memory load and store

accesses memory access through the Memory

Management Unit (MMU)

memory access de�ned page by page

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

R
eg

io
n 

2

Processor

Hypervisor (Virtual Machine Monitor)

Operating System

Application Application Application

Operating System

Machine Mode (optional)

Supervisor Mode

User Mode

R
eg

io
n 

1

Configures

Memory 
Management Unit

(translation)

Configures

Memory Protection 
(optional)

Memory Management



Paging

Physical Memory (RAM) is

divided in frames

Logical Memory is divided in

pages

page = frame = 4 KB (usually)

logical addresses are translated to
physical addresses using a page
table

the page table is located in the
physical memory

each memory access requires at

least memory 2 accesses

the memory unit is the page

Page Table

1

0

200

2

7

N/A

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

Logical Memory

Page n-1

Page 1

Page 0

Page 2

Page 3

Page 5



Address
Translation

the logic address is divided
in two parts:

page index

offset within the page

the MMU translates every
logic address into a
physical address using a
page table

page to frame

Page Index Offset

Logic Address

Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table



Translation
Lookaside
Buffer (TLB)

the page table is stored
in RAM

each memory access
requires 2 accesses

1. read the page table

entry to translate the

address

2. the requested access

caching address
translation

Page Index Offset

Logic Address

Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table
TLB MIss

TLB HitTranslation 
Lookaside 

Buffer



Page
Directory

each table entry is 4B

the address space is 4GB

(for 32 bits processors)

RAM was counted in MB
when paging started being
used

caching address translation

size  =table  

size  page

size  ram

size  =table_32_bits  

4 × 210

232

size  =table_32_bits 4MB

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

Page
Directory

Offset

Logic Address

Page Index Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

0 Page Tabe Frame Valid Access

1 Page Table Frame Valid Access

2 Page Table Frame Valid Access

2p-1 Page Table Frame Valid Access

Page Directory
TLB Miss

TLB HitTranslation 
Lookaside 

Buffer

two levels, page directory and table, usually used for 32 bits systems



Page Table Entry

this is one entry of the page table

P - is the page’s frame present in RAM?

R/W - read only or read write access

U/S - can the page be accessed in user mode?

D and A - has this page been written since the OS has reset these bits?

AVL - bits available for the OS to use, ignored by MMU

0123456789111215

PR/WU/SPWTPCDADPATGAVLFrame Number

0: Invalid
1: Valid

0 - R
1 - RW

0: User
1: Super

0 - W Back
1 - W Through

CacheAccessedDirtyAttributesGlobalavailable for OS

1631

Frame Number

for x86 - 32 bits



Page Table Entry

this is one entry of the page table using Physical Address Extension (PAE)

XD - eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

PK - Protection Keys, allows user mode to set protection (64 bit only)

0123456789111215

PR/WU/SPWTPCDADPATGAVLFrame Number

0: Invalid
1: Valid

0 - R
1 - RW

0: User
1: Super

0 - W Back
1 - W Through

CacheAccessedDirtyAttributesGlobalavailable for OS

1631

Frame Number

32353647

Frame NumberReserved

48515258596263

ReservedAVLPKXD

available for OSProtection KeysExecute
Disable

for x86 - 32 bits with PAE



Microcontroller (MCU)

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System

costs $0.1 - $25

uses Memory Protection Unit

Integrated in embedded systems for certain tasks

Microprocessor (CPU)

high operating frequency (GHz)

limited number of I/O ports

usually requires an Operating System

costs $75 - $500

uses Memory Management Unit

General purpose, for PC & workstations



Conclusion

Memory Protection Unit

Memory Management Unit

we talked about


