Memory Protection

Lecture 9

Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.

https://wyliodrin.com/

Memory Protection

= Memory Protection Unit

= Memory Management Unit

Memory Protection

ARM: MPU, RISC-V: PMP

*@
Bibliography =

for this section
Joseph Yiu, The Definitive Guide to ARM® Cortex®-MO0 and Cortex-MO+ Processors, 2nd Edition

= Chapter 12 - Memory Protection Unit

Memory Protection Cr——
Application Application Application > @
memory access defined region by region ’_> -

User Mode |
__ optional

Configures

= restricts access to physical memory

A\ 4

. | - - R Memory Protection
(¢] ing S [¢] ing S > EL2
® yses thSlcal addresses perating System perating System oz
Supervisor Mode optional :
The processor works in three modes: = ———————— T Confgures |
Hypervisor (Virtual Machine Monitor) ’
= machine mode (optional) - used at boot, Machine Mode (optiona) ~ -
allows access to everything ~ ~
Memory
= supervisor mode - restricts access to some Region 1
registers and accesses memory through nerd 0
. . . word 1
Memory Protection EL2 (if machine mode 0
€XIS tS) © Region 2 <
= user mode - allows only ALU and memory word 2
access through Memory Protection | werds)

MPU for RP2040

Cortex-MO+ works in three modes

= handler mode - no restrictions - used while
executing ISRs and Exception Handlers
= thread mode
= privileged no restrictions - usually used for the
operating system
= unprivileged mode - allows only ALU and
memory access through Memory Protection - used

for applications

MPU allows 8 regions

= each region has up to 8 subregions

= permissions RW X

RP2040 (Core 2)

RP2040 (Core 1)

Application Application Application

Unprivileged Mode

Operating System / Bare Metal Framework

Privileged Mode

Memory Protection

~

MPU

Y

optional

Configures i
(N)
Memory \
Region 1
word 0
word 1
o
c
K]
1= S
173
x .
Region 2 <
word 2
[word 3]

Memory Protection Unit

Cortex-M MPU

KMPU O
[Region Base Address]
Enable)\
rﬁ /f
HF/NMI Size] [Subregion Disable]
Enable N
.\
Enable AN
N — J

= allows the definition of memory regions
= regions can overlap, highest region number takes priority

= regions have access permissions (similar to rwx)
region_size = min (256, 2°**)

base_address = region_size X N

-

————————— e
.

’

Address Space

oL~ S ORVEURRORURORRORe

Region -1
(if PRIV Enable)

S .

\ Region 3
Permissions

41_ Region 2

Permissions

_J

Region 1
Permissions

Region 0
Permissions

Memory Protection Unit e

Access Protection

000
/ MPU \
Enable ’ ‘ Region Base Address ’ ’1 001
N /r
HF/NMI Si Subregion Disabl
e 1ze] (upregion bisapble] @1@
W Cache Setup
Enable S 011
& J
AP Access Protection 100
XN eXecute Never
101
m faults if MCU has to read the next instruction from
. 110
an XN region
111

Privileged Mode
No Access
Read/Write
Read/Write
Read/Write

Do not use
Read only

Read only

Read/Write

Unprivileged Mode
No Access

No Access

Read only
Read/Write

Do not use

No Access

Read only

Read only

Subregions [mmmmm
TR R L EEEEEEEEEEEEEE P EEEe |)
i Subregion 0]
= each region is divided in 8 subregion | Subregion 1
= each bitin Subregion Disable disables a subregion] Subregion 2
: . . . E“‘--‘-‘--‘-“-‘-'- i Region 1
= adisabled subregion triggers a fault if accessed . Subregion3 ; >_witﬁ’ some
i : i subregions
[wpu D) S Subregion4 ! disabled
[Region Base Address] i Subregion 5 :
Enable) L e i
- J ! Subregion 6 i
(1 o Subregion7 ’
HF/NMI Size] [Subregion Disable] | toregion)
Enable \ R bbb
— -
)
PRIV \ Cache Setup]
Enable -
& %
ST b Region 0
!) with none
i subregions
\'\ ______________________________) disabled

Subregions’ Usage
improve granularity
region_size = min(256, 25%°)
base_address = region_size X N

region_size

8

a 5K region is not allowed (5K is not a power of 2)

use two 4K regions back to back

subregion_size =

disable 6 of the subregions (subregion is 512B)

~

Address Space \

Region 1

. with 6
subregions

disabled

Region 0
no

s subregion

disabled

Memory Layout

protection

Flash

= Code - read and execute
= _rodata - constants - read only
= _data- in flash - initialized global variables

= s copied to RAM at startup by the init function

» should not be accessed after startup
RAM
= stack - read and write

= usually protected by unaccessible memory before and after
= _data- in RAM - global variables - read and write

= _bss - global variables (not initialized or initialized to 0) - read and write

Flash Storage

RP2040 Boot Loader
.boot_loader

Initial Stack Address

Exceptions & Interrupts

Code
.text

Read Only Data
.rodata

Data
.data

Copied at startup

0x0000_0000

Region
0
R)

Region
1
(R XN)

Region
2

(RW
XN)

Region
3

(RW
XN)

OXFFFF_FFFF

* drawing is not at scale, code and data are significantly greater than the interrupt vector

Memory Management

MMU

Bibliography

for this section
1. Andrew Tanenbaum, Modern Operating Systems (4th edition)

= Chapter 3 - Memory Management
= Subchapter 3.3 - Virtual Memory

2. Philipp Oppermann, Writing an OS in Rust

https://os.phil-opp.com/
https://os.phil-opp.com/paging-introduction/
https://os.phil-opp.com/paging-implementation/

Memory Management

memory access defined page by page

= uses logical addresses

= translates to physical addresses
The processor works in at least two modes:

= supervisor mode
m restricts access to some registers
= accesses virtual addresses through Memory
Protection (if machine mode exists)
= user mode
= allows only ALU and memory load and store
= accesses memory access through the Memory

Management Unit (MMU)

RIocesse /Memory Management N
\1 Memory
Application Application Application » Management Unit
J (translation)
User Mode i
-- Configures
2 Y
)) T - Memory Protection
Operating System Operating System (optional)
Supervisor Mode
Configures
Hypervisor (Virtual Machine Monitor)
\\ Machine Mode (optional) o //

(Physical Memory W

Frame 0 |
-
5

S Frame 1
[
4
>
Frame 2

: ‘
o
c
k=)
o
[}
4

Frame m-1 ‘ |
)

Paging

the memory unit is the page

= Physical Memory (RAM) is
divided in frames

= Logical Memory is divided in
pages

= page = frame = 4 KB (usually)

logical addresses are translated to

physical addresses using a page
table

the page table is located in the
physical memory

= each memory access requires at

least memory 2 accesses

Logical Memory

Page 0

Page 1

Page 2

Page 3

o

Page 5

AN

Page n-1

((—

\\;)

Page Table

Physical Memory

Y

Y

Frame O

Y

o

Frame 1

AN

/\

Y

Frame 2

([

Frame m-1

\\—/

Address
Translation

page to frame

the logic address is divided
in two parts:

= page index

= offset within the page

the MMU translates every
logic address into a
physical address using a
page table

Physical Address 1 ﬁi’lg

Logic Address (
Page Index 1 Offset J } ‘ [Frame Index 1 Offset J J
/ Page Table \
[0 [Frame Index IVaIid IAccess]
[1 [Frame Index IVaIid IAccess]
--------------)[2 [Frame Index IVaIid IAccess]
L)
Frame Index

(=]

I Valid IACCGSS]/

-
Trans 1 atl O n Logic Address .(Physical Address l

Lookaside (=] [_romemee [Toma]|
Buffer (TLB)

~
. : . it J
caching address { Translation e
. -3 Lookaside
translation Buffer < §
)
‘.cheRIT:ge table is stored . Page Table N
in RAM :
[0 I Frame Index IVaIid IAccess]
each memory access [1 [Frame Index IVaIid IAccess]
requires 2 accesses LS)[2 [Frame Index IVaIid IAccess]
L y
1. read the page table)
entry to translate the
[2P.1 [Frame Index IVaIid IAccess]
address NS

2. the requested access

Page
Directory

caching address translation .

. S1Z€ram
S1Z€taple = ———
S1Z€page

= each table entry is 4B
= the address space is 4GB
(for 32 bits processors)

232
S1Z€table_32_bits — m

3izetable_32_bits = 4MB

RAM was counted in MB
when paging started being
used

Physical Address l

h 4

[

Frame Index

ot ||

~

Logic Address (
1
Page

‘ [Directory IPage IndexI Offset] ‘

T |
Translation TLB Hit:
Lookaside

Buffer
A Page Directory
TLB Miss

Page Tabe Frame

Valid IAccess

Page Table Frame

I Page Table Frame

I)
I Valid | Access]
I)

Valid IAccess

C

Page Table Frame

I Valid IAccesi

K Page Table

[o

I

Frame Index

I Valid IAccess?\\

E

I

Frame Index

> 2

I

Frame Index

[t s
[|

Valid | Access]

L

e

I

Frame Index

I Valid IAccesj

=

=2

two levels, page directory and table, usually used for 32 bits systems

&)

Page Table Entry

for x86 - 32 bits

this is one entry of the page table

= P-isthe page’s frame present in RAM?

= R/W -read only or read write access

= U/S - can the page be accessed in user mode?

= Dand A - has this page been written since the OS has reset these bits?
= AVL - bits available for the OS to use, ignored by MMU

31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1- W Through 1: Super 1-RW 1: Valid

Page Table Entry

for x86 - 32 bits with PAE

this is one entry of the page table using Physical Address Extension (PAE)

= XD - eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

= PK- Protection Keys, allows user mode to set protection (64 bit only)

63 62 59 58 52 51 48
| XD | PK | AVL | Reserved |
Execute Protection Keys available for OS
Disable
a7 36 35 32
| Reserved | Frame Number |
31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1 - W Through 1: Super 1-RW 1: Valid

Microcontroller (MCU) Microprocessor (CPU)

Integrated in embedded systems for certain tasks General purpose, for PC & workstations
= Jow operating frequency (MHz) = high operating frequency (GHz)

= alot of I/O ports = limited number of I/O ports

= controls hardware = usually requires an Operating System
= does not require an Operating System = costs $75-$500

= costs $0.1-$25 = uses Memory Management Unit

= uses Memory Protection Unit

Raspberry Pi Pico (©)2020 ., BOOTSEL .;:'i
s f "DV SN

Conclusion

we talked about

= Memory Protection Unit

= Memory Management Unit

