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Memory Protection

= Memory Protection Unit

= Memory Management Unit



Memory Protection

ARM: MPU, RISC-V: PMP
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= Chapter 12 - Memory Protection Unit
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MPU for RP2040

Cortex-MO+ works in three modes

= handler mode - no restrictions - used while
executing ISRs and Exception Handlers
= thread mode
= privileged no restrictions - usually used for the
operating system
= unprivileged mode - allows only ALU and
memory access through Memory Protection - used

for applications

MPU allows 8 regions

= each region has up to 8 subregions

= permissions RW X
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Memory Protection Unit

Cortex-M MPU
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= allows the definition of memory regions
= regions can overlap, highest region number takes priority

= regions have access permissions (similar to rwx)
region_size = min (256, 2°**)
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Memory Protection Unit e
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Subregions’ Usage
improve granularity
region_size = min(256, 25%°)
base_address = region_size X N

region_size

8

a 5K region is not allowed (5K is not a power of 2)

use two 4K regions back to back
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disable 6 of the subregions (subregion is 512B)
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Memory Layout

protection

Flash

= Code - read and execute
= _rodata - constants - read only
= _data- in flash - initialized global variables

= s copied to RAM at startup by the init function

» should not be accessed after startup
RAM
= stack - read and write

= usually protected by unaccessible memory before and after
= _data- in RAM - global variables - read and write

= _bss - global variables (not initialized or initialized to 0 ) - read and write
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* drawing is not at scale, code and data are significantly greater than the interrupt vector



Memory Management

MMU
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Memory Management

memory access defined page by page

= uses logical addresses

= translates to physical addresses
The processor works in at least two modes:

= supervisor mode
m restricts access to some registers
= accesses virtual addresses through Memory
Protection (if machine mode exists)
= user mode
= allows only ALU and memory load and store
= accesses memory access through the Memory

Management Unit (MMU)
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Paging

the memory unit is the page

= Physical Memory (RAM) is
divided in frames

= Logical Memory is divided in
pages

= page = frame = 4 KB (usually)

logical addresses are translated to

physical addresses using a page
table

the page table is located in the
physical memory

= each memory access requires at

least memory 2 accesses
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Address
Translation

page to frame

the logic address is divided
in two parts:

= page index

= offset within the page

the MMU translates every
logic address into a
physical address using a
page table
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Page
Directory

caching address translation .
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= each table entry is 4B
= the address space is 4GB
(for 32 bits processors)
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Page Table Entry

for x86 - 32 bits

this is one entry of the page table

= P-isthe page’s frame present in RAM?

= R/W -read only or read write access

= U/S - can the page be accessed in user mode?

= Dand A - has this page been written since the OS has reset these bits?
=  AVL - bits available for the OS to use, ignored by MMU

31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global  Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1- W Through 1: Super 1-RW 1: Valid



Page Table Entry

for x86 - 32 bits with PAE

this is one entry of the page table using Physical Address Extension (PAE)

= XD - eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

= PK- Protection Keys, allows user mode to set protection (64 bit only)

63 62 59 58 52 51 48
| XD | PK | AVL | Reserved |
Execute Protection Keys available for OS
Disable
a7 36 35 32
| Reserved | Frame Number |
31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1 - W Through 1: Super 1-RW 1: Valid



Microcontroller (MCU) Microprocessor (CPU)

Integrated in embedded systems for certain tasks General purpose, for PC & workstations
= Jow operating frequency (MHz) = high operating frequency (GHz)

= alot of I/O ports = limited number of I/O ports

= controls hardware = usually requires an Operating System
= does not require an Operating System = costs $75-$500

= costs $0.1-$25 = uses Memory Management Unit

= uses Memory Protection Unit
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Conclusion

we talked about

= Memory Protection Unit

= Memory Management Unit



