Memory Protection

Lecture 8

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Memory Protection

= Memory Protection Unit
= Privilege Modes
= Regions
= Memory Management Unit
= Pages
= Frames

= TLB

Memory Protection

ARM: MPU, RISC-V: PMP

MPU for RP2040

Protected Memory System Architecture v7 (PMSAv7)

Bibliography
for this section

Joseph Yiu, The Definitive Guide to ARM® Cortex®-MO and Cortex-MO+ Processors, 2nd Edition

= Chapter 12 - Memory Protection Unit

MPU for RP2040

Cortex-M0O+ works in three modes

= handler mode - no restrictions - used while executing
ISRs and Exception Handlers
= thread mode
= privileged no restrictions - usually used for the
operating system
= unprivileged mode - allows only ALU and memory
access through Memory Protection - used for

applications
MPU allows 8 regions

= eachregion has up to 8 subregions

= permissions RWX

RP2040 (Core 2)

RP2040 (Core 1)

Application Application Application

Unprivileged Mode

Operating System / Bare Metal Framework

Privileged Mode

-

Memory Protection

> MPU
optional ‘A—J
Configures i
N\)
Memory \
Region 1
word 0
word 1
o
c
2
j=2}
173
o .
Region 2 <
word 2
[word 3 J

Memory Protection Unit

Cortex-M MPU (PMSAv7-m)

/MPU O
[Region Base Address]
Enable)\
fﬁ /f
HF/NMI Size] [Subregion Disable]
Enable N
.\
PRIV | Cache Setup][EN][AP][XN]
Enable AN
N — J

= allows the definition of memory regions
= regions can overlap, highest region number takes priority

= regions have access permissions (similar to rwx)
region_size = 2°°°, size >= 8

base_address = region_size X N

/ Address Space \

Py
@
k=
)
=)
w

——— e

Region -1
(if PRIV Enable)

Region 0

S)

\ Region 3
Permissions

41_ Region 2

Permissions

_J

Region 1
Permissions

Region 0
Permissions

Memory Protection Unit
Access Protection
/MPU 2
Enable ‘ Region ’ Base Address ’ 1
Size] ‘ Subregion Disable]

(&

PRIV
Enable

| Cache Setup } [EN} AP [ﬁj
J

AP Access Protection

XN eXecute Never

an XN region

faults if MCU has to read the next instruction from

AP

000

001

010

011

101

110

111

Privileged Mode
No Access
Read/Write
Read/Write

Read/Write

Read only
Read only

Read/Write

%
Unprivileged Mode

No Access
No Access
Read only

Read/Write

No Access
Read only

Read only

Subregions

= eachregionis divided in 8 subregion

= eachbitin Subregion Disable disables a subregion

= adisabled subregion triggers a fault if accessed

4 MPU

)

Enable
—

HF/NMI
Enable

PRIV
Enable

S

[[o

~

J

Base Address] h

Size] [Subregion Disable]

Cache Setup] [EN][AP] [XN]

/

/ Address Space \

Region 1

\ with some
subregions

disabled

Region 0
with none
subregions
disabled

Subregions’ Usage

improve granularity
region_size = 2°°°, size >= 8
base_address = region_size X N

region_size
8

a 5K region is not allowed (5K is not a power of 2)

subregion_size =

use two 4K regions back to back

disable 6 of the subregions (subregion is 512B)

~

Address Space \

Region 1
subregions
disabled

Region 0
no

s subregion

disabled

Memory Layout

protection

Flash

= Code - read and execute
= _rodata - constants - read only
= _.data-in flash - initialized global variables

= s copied to RAM at startup by the init function

= should not be accessed after startup

RAM

= stack-read and write
= usually protected by unaccessible memory before and after
= _.data-in RAM - global variables - read and write

= _bss - global variables (not initialized or initialized to 0) -read and write

Flash Storage

RP2040 Boot Loader
.boot_loader

Initial Stack Address

Exceptions & Interrupts

Code
.text

Read Only Data
.rodata

Data
.data

Copied at startup

0x0000_0000

Region
0
R)

Region
1
(R XN)

Region
2

(RW
XN)

Region
3

(RW
XN)

OXFFFF_FFFF

* drawing is not at scale, code and data are significantly greater than the interrupt vector

MPU for RP2350

Protected Memory System Architecture v8 (PMSAvS)

Bibliography
for this section

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

= Chapter 6 - Memory System
= Subchapter 6.4 - Access Permission Management

= Chapter 12 - Memory Protection Unit (MPU)

MPU for RP2350

Cortex-M33 works in three modes

handler mode - no restrictions - used while executing

ISRs and Exception Handlers

thread mode

= privileged no restrictions - usually used for the
operating system

= unprivileged mode - used for applications, allows
only ALU and memory access through:
= Default Access Permission - restricts

unprivileged access to the Cortex-M Peripherals

= Memory Protection

MPU allows 8 regions

permissions RW X

RP2350 (Core 2)

RP2350 (Core 1) >

MPU
not present or
disabled

Default Access Permission

(Memory Protection

> MPU

Application Application Application
Unprivileged Mode aplimagl A :
Configures i
Operating System / Bare Metal Framework
.
Privileged Mode
/ Memory \
Region 1
word 0
word 1
Region 2 <
word 2
[word 3 J

Memory Protection Unit T re—

Cortex-M MPU (PMSAvS8) DR V)
: Region 3
4 MPU 0 Region 3 [~ Permissions
Region 4
Enable ; 1
\ 4 \ 4 i . 1 Region 2
v 3 4 Region 2 : Permissions
HF/NMI [Base Address] [Limit] { P
Enable || | — @@ J |\ @@ J ||| | T
. g Ir'_ """""""""""""""" N
PRIV [SH][AP][XN] [Attributes] [EN] :

Enable AN _ : Region 1
o) : Region 1 Permissions
= allows the definition of memory regions A T —
= regions cannot overlap

. Region -1
= regions have access permissions (similar to rwx) (if PRIV Enable)
region_size = 32 x N
Region 0 Region 0
base_address = 32 X N : .| [Permissions

L Z

Memory Protection Unit

Access Protection

KMPU
Enable i i
HF/NMI [Base Address] [Limit]
Enable
Enable

AP Access Protection

XN eXecute Never

» faults if MCU has to read the next instruction

from an XN region

SH Shared between cores and peripherals

Attributes used for cache

AP Privileged Mode Unprivileged Mode

00 Read/Write No Access
@1 Read/Write Read/Write
10 Read only No Access
11 Read only Read only

Better granularity -> there is no need for No
Access in privileged mode.

There is no need to overlap regions to obtain the required

protected memory space.

Memory Management

MMU

Bibliography

for this section
1. Andrew Tanenbaum, Modern Operating Systems (4th edition)

= Chapter 3 - Memory Management
= Subchapter 3.3 - Virtual Memory

2. Philipp Oppermann, Writing an OS in Rust

https://os.phil-opp.com/
https://os.phil-opp.com/paging-introduction/
https://os.phil-opp.com/paging-implementation/

M M t RIccesse (Memory Management N
emory Managemen
Application Application Application > Ma(r:ager?ii_nt l)Jnit
ranslation
memory access defined page by page o Lﬁ
"""""""""""""""""""""""""""""""""""" confgures |
= uses logical addresses "ﬁ
. Operating System Operating System [i Mem?;);ti)r:;%ction
= translates to physical addresses ”
Supervisor Mode
"""""""""""""""""""""""""""""""""" DU ...}
The processor works in at least two modes: [Hypervisor (Vintual Machine Monitor))
Machine Mode (optional) K /
= supervisor mode
. . (Physical Memory
= restricts access to some registers
Frame 0O ‘
= accesses virtual addresses through Memory
Protection (if machine mode exists) g e
= user mode Frame 2 |
= allows only ALU and memory load and store |
= accesses memory access through the Memory g .
14 rame m-

Management Unit (MMU)

Paging

the memory unit is the page

= Physical Memory (RAM) is divided
in frames

= Logical Memory is divided in
pages

= page = frame = 4 KB (usually)

logical addresses are translated to
physical addresses using a page table

the page table is located in the
physical memory

= each memory access requires at

least 2 memory accesses

Logical Memory

Page 0

Page 1

Page 2

Page 3

Page 5

Page n-1

f—

\;)

Page Table >
_______)‘ 1
> 0

»

Physical Memory

N

Y

Y

Frame O

o

Frame 1

AN

/\

Frame 2

—

Frame m-1

J

Address
Translation

page to frame

the logic address is divided
in two parts:

= page index

= offset within the page

the MMU translates every
logic address into a
physical address using a
page table

Physical Address 1 ﬁil%

Logic Address (
Page Index 1 Offset } ‘ [Frame Index 1 Offset J]
Page Table

(0 [Frame Index TVaIid TAccess]
(1 [Frame Index IVaIid TAccess]

--------------){ 2 [Frame Index ‘ Valid ‘Access]

L)

‘ 2P_q [Frame Index

‘ Valid ‘ ACCGSS]

-
Trans 1 atl O n Logic Address .(Physical Address l

Lookaside Page Index] Offset] ‘ ‘ [Frame Index] Offset ’ J
Buffer (TLB)
caching address translation Translation TLBHE g
- ookaside
ff <
the page table is stored in o h)
RAM TLBEMlss / Page Table \
each memory access [0 I Frame Index IVaIid IAccess]
requires 2 accesses [1 [Frame Index IVaIid IAccess]
1. read the page table T)[2 [Frame Index IVaIid IAccess]
' C
entry to translate the : ’
address [2P-1 [Frame Index IVaIid IAccess]

2. the requested access

P Logic Address (Physical Address 1
ag e [Dif::ggr I Page Index I Offset] [[Frame Index I Offset ”
Director A
Irec MY .
caching address translation ‘- Leosde | ’
Buffer
N A /Page Directory \
: size .
S’Lzetable = ﬁ " :M - [0 I Page Tabe Frame IVaIid IAccess]
page ; [1 I Page Table Frame I Valid IAccess] fPage Table \
] eaCh table el’ltl’y iS 4B :‘“")[2 I PEER TR e IValid IAccess] [0 I Frame Index IVaIid IAccess]
C
. the address space iS 4GB) [1 I Frame Index IVaIid IAccess]
: ;)[2 I Frame Index IVaIid IAccessJ
(for 32 bits processors) izp.l I Page Table Frame IValid IAccess] C
. 232 [2P1 I Frame Index IVaIid IAccess]
Sstze itg — T i
table_32_bits 4 % 210 \ @

812€1able 32 bits = 4MB two levels, page directory and table, usually used for 32 bits systems

RAM was counted in MB
when paging started being
used

Page Table Entry

for x86 - 32 bits

this is one entry of the page table

= P-is the page’s frame present in RAM?

= R/W -read only or read write access

= U/S - can the page be accessed in user mode?

= D and A -has this page been written since the OS has reset these bits?
= AVL - bits available for the OS to use, ignored by MMU

31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1- W Through 1: Super 1-RW 1: Valid

Page Table Entry

for x86 - 32 bits with PAE

this is one entry of the page table using Physical Address Extension (PAE)

= XD -eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

= PK-Protection Keys, allows user mode to set protection (64 bit only)

63 62 59 58 52 51 48
| XD | PK | AVL | Reserved |
Execute Protection Keys available for OS
Disable
a7 36 35 32
| Reserved | Frame Number |
31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1 - W Through 1: Super 1-RW 1: Valid

Microcontroller (MCU)

Integrated in embedded systems for certain tasks

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System
costs $0.1-$25

uses Memory Protection Unit

CYWA43439

.
Microprocessor (CPU)

General purpose, for PC & workstations

high operating frequency (GHz)
limited number of I/0 ports

usually requires an Operating System
costs $75 - $500

uses Memory Management Unit

Conclusion

we talked about

Memory Protection Unit

= Privilege Modes

= Regions

Memory Management Unit
= Pages

= Frames

= TLB

