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Memory Protection

ARM: MPU, RISC-V: PMP






MPU for RP2040

Protected Memory System Architecture v7 (PMSAv7)



Bibliography
for this section

Joseph Yiu, The Definitive Guide to ARM® Cortex®-MO and Cortex-MO+ Processors, 2nd Edition

=  Chapter 12 - Memory Protection Unit



MPU for RP2040

Cortex-M0O+ works in three modes

= handler mode - no restrictions - used while executing
ISRs and Exception Handlers
= thread mode
= privileged no restrictions - usually used for the
operating system
= unprivileged mode - allows only ALU and memory
access through Memory Protection - used for

applications
MPU allows 8 regions

= eachregion has up to 8 subregions

= permissions RWX
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Memory Protection Unit

Cortex-M MPU (PMSAv7-m)
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= allows the definition of memory regions
= regions can overlap, highest region number takes priority

= regions have access permissions (similar to rwx)
region_size = 2°°°, size >= 8

base_address = region_size X N
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Memory Protection Unit
Access Protection
/MPU 2
Enable ‘ Region ’ Base Address ’ 1
Size ] ‘ Subregion Disable ]

(&

PRIV
Enable

| Cache Setup } [EN} AP [ﬁj
J

AP Access Protection

XN eXecute Never

an XN region

faults if MCU has to read the next instruction from

AP

000

001

010

011

101

110

111

Privileged Mode
No Access
Read/Write
Read/Write

Read/Write

Read only
Read only

Read/Write

%
Unprivileged Mode

No Access
No Access
Read only

Read/Write

No Access
Read only

Read only



Subregions

= eachregionis divided in 8 subregion

= eachbitin Subregion Disable disables a subregion

= adisabled subregion triggers a fault if accessed
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Subregions’ Usage

improve granularity
region_size = 2°°°, size >= 8
base_address = region_size X N

region_size
8

a 5K region is not allowed (5K is not a power of 2)

subregion_size =

use two 4K regions back to back

disable 6 of the subregions (subregion is 512B)
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Memory Layout

protection

Flash

= Code - read and execute
= _rodata - constants - read only
= _.data-in flash - initialized global variables

= s copied to RAM at startup by the init function

= should not be accessed after startup

RAM

= stack-read and write
= usually protected by unaccessible memory before and after
= _.data-in RAM - global variables - read and write

= _bss - global variables (not initialized or initialized to 0 ) -read and write

Flash Storage

RP2040 Boot Loader
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* drawing is not at scale, code and data are significantly greater than the interrupt vector



MPU for RP2350

Protected Memory System Architecture v8 (PMSAvS)
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MPU for RP2350

Cortex-M33 works in three modes

handler mode - no restrictions - used while executing

ISRs and Exception Handlers

thread mode

= privileged no restrictions - usually used for the
operating system

= unprivileged mode - used for applications, allows
only ALU and memory access through:
= Default Access Permission - restricts

unprivileged access to the Cortex-M Peripherals

= Memory Protection

MPU allows 8 regions

permissions RW X
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Memory Protection Unit T re—

Cortex-M MPU (PMSAvS8) DR V)
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Memory Protection Unit

Access Protection

KMPU
Enable i i
HF/NMI [ Base Address ] [ Limit ]
Enable
Enable

AP Access Protection

XN eXecute Never

»  faults if MCU has to read the next instruction

from an XN region

SH Shared between cores and peripherals

Attributes used for cache

AP  Privileged Mode  Unprivileged Mode

00  Read/Write No Access
@1  Read/Write Read/Write
10  Read only No Access
11 Read only Read only

Better granularity -> there is no need for No
Access in privileged mode.

There is no need to overlap regions to obtain the required

protected memory space.



Memory Management

MMU
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Paging

the memory unit is the page

= Physical Memory (RAM) is divided
in frames

= Logical Memory is divided in
pages

= page = frame = 4 KB (usually)

logical addresses are translated to
physical addresses using a page table

the page table is located in the
physical memory

= each memory access requires at

least 2 memory accesses
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Address
Translation

page to frame

the logic address is divided
in two parts:

= page index

= offset within the page

the MMU translates every
logic address into a
physical address using a
page table
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Page Table Entry

for x86 - 32 bits

this is one entry of the page table

= P-is the page’s frame present in RAM?

= R/W -read only or read write access

= U/S - can the page be accessed in user mode?

= D and A -has this page been written since the OS has reset these bits?
=  AVL - bits available for the OS to use, ignored by MMU

31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global  Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1- W Through 1: Super 1-RW 1: Valid



Page Table Entry

for x86 - 32 bits with PAE

this is one entry of the page table using Physical Address Extension (PAE)

= XD -eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

= PK-Protection Keys, allows user mode to set protection (64 bit only)

63 62 59 58 52 51 48
| XD | PK | AVL | Reserved |
Execute Protection Keys available for OS
Disable
a7 36 35 32
| Reserved | Frame Number |
31 16

| Frame Number |

15 12 11 9 8 7 6 5 4 3 2 1 0
| Frame Number AVL | G | PAT | D | A | PCD | PWT | u/s | R/W | P |
available for OS Global Attributes Dirty Accessed Cache 0-WBack 0:User 0-R 0: Invalid

1 - W Through 1: Super 1-RW 1: Valid



Microcontroller (MCU)

Integrated in embedded systems for certain tasks

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System
costs $0.1-$25

uses Memory Protection Unit

CYWA43439

.
Microprocessor (CPU)

General purpose, for PC & workstations

high operating frequency (GHz)
limited number of I/0 ports

usually requires an Operating System
costs $75 - $500

uses Memory Management Unit




Conclusion

we talked about

Memory Protection Unit

= Privilege Modes

= Regions

Memory Management Unit
= Pages

= Frames

= TLB



