
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Memory Protection
Lecture 8

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Memory Protection

Memory Protection Unit

Privilege Modes

Regions

Memory Management Unit

Pages

Frames

TLB

Memory Protection
ARM: MPU, RISC-V: PMP

MPU for RP2040
Protected Memory System Architecture v7 (PMSAv7)

Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, 2nd Edition

Chapter 12 - Memory Protection Unit

for this section

MPU for RP2040

handler mode - no restrictions - used while executing

ISRs and Exception Handlers

thread mode

privileged no restrictions - usually used for the

operating system

unprivileged mode - allows only ALU and memory

access through Memory Protection - used for

applications

MPU allows 8 regions

each region has up to 8 subregions

permissions R W X

RP2040 (Core 1)

Application Application Application

Operating System / Bare Metal Framework

Privileged Mode

Unprivileged Mode

Memory

word 0

word 1

Region 1

word 2

word 3

Region 2

R
eg

io
n

3

``````

RP2040 (Core 2)

Configures

optional

MPU

Memory Protection

Cortex-M0+ works in three modes



Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XNEN

allows the definition of memory regions

regions can overlap, highest region number takes priority

regions have access permissions (similar to rwx)
Region -1

(if PRIV Enable)

Address Space

Region 2

Region 3

Region 1

Region 0 Region 0
Permissions

Region 1
Permissions

Region 2
Permissions

Region 3
Permissions

Cortex-M MPU (PMSAv7-m)

region_size = 2 , size >=size 8

base_address = region_size × N



Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XNEN

AP Access Protection

XN eXecute Never

faults if MCU has to read the next instruction from

an XN region

AP Privileged Mode Unprivileged Mode

000 No Access No Access

001 Read/Write No Access

010 Read/Write Read only

011 Read/Write Read/Write

100 Do not use Do not use

101 Read only No Access

110 Read only Read only

111 Read/Write Read only

Access Protection



Subregions

each region is divided in 8 subregion

each bit in Subregion Disable  disables a subregion

a disabled subregion triggers a fault if accessed

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Base AddressRegion

Size

Cache Setup AP

Subregion Disable

XNEN

Address Space

Region 0
with none
subregions
disabled

Region 1
with some
subregions
disabled

Subregion 0

Subregion 1

Subregion 2

Subregion 3

Subregion 4

Subregion 5

Subregion 7

Subregion 6



Subregions’ Usage

a 5K region is not allowed (5K is not a power of 2)

use two 4K regions back to back

disable 6 of the subregions (subregion is 512B)

Data (5K)

D
at

a 
(5

K
)

Region 0
no
subregion
disabled

Region 1
with 6
subregions
disabled

Address Space

improve granularity

region_size = 2 , size >=size 8

base_address = region_size × N

subregion_size = ​

8

region_size



Memory Layout

Flash
Code - read and execute

.rodata - constants - read only

.data - in flash - initialized global variables

is copied to RAM at startup by the init  function

should not be accessed after startup

RAM
stack - read and write

usually protected by unaccessible memory before and after

.data - in RAM - global variables - read and write

.bss - global variables (not initialized or initialized to 0 ) - read and write

Flash Storage

Initial Stack Address

Exceptions & Interrupts

Code
.text

Read Only Data
.rodata

RP2040 Boot Loader
.boot_loader

* drawing is not at scale, code and data are significantly greater than the interrupt vector

Data
.data

RAM

Stack

Data
.data

C
op

ie
d 

at
 s

ta
rtu

p

Region
2
(RW
XN)

Region
0 
(R)

Region
1 
(R XN)

Peripherals

UART Region
3
(RW
XN)GPIO

0x0000_0000

0xFFFF_FFFF

.bss

subregion disabled

protection



MPU for RP2350
Protected Memory System Architecture v8 (PMSAv8)



Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

Chapter 6 - Memory System

Subchapter 6.4 - Access Permission Management

Chapter 12 - Memory Protection Unit (MPU)

for this section



MPU for RP2350

handler mode - no restrictions - used while executing

ISRs and Exception Handlers

thread mode

privileged no restrictions - usually used for the

operating system

unprivileged mode - used for applications, allows

only ALU and memory access through:

Default Access Permission - restricts

unprivileged access to the Cortex-M Peripherals

Memory Protection

MPU allows 8 regions

permissions R W X

RP2350 (Core 1)

Application Application

MPU 
not present or

disabled

Application

Operating System / Bare Metal Framework

Privileged Mode

Unprivileged Mode

Memory

word 0

word 1

Region 1

word 2

word 3

Region 2

``````

RP2350 (Core 2)

Configures

optional

MPU

Memory Protection

Default Access Permission

Cortex-M33 works in three modes

Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Region

AP XN

Base Address

SH

Limit

Attributes EN

allows the definition of memory regions

regions cannot overlap

regions have access permissions (similar to rwx)
Region -1

(if PRIV Enable)

Address Space

Region 2

Region 3

Region 1

Region 0 Region 0
Permissions

Region 1
Permissions

Region 2
Permissions

Region 3
Permissions

Invalid Region

Cortex-M MPU (PMSAv8)

region_size = 32 × N

base_address = 32 × N

Memory Protection Unit

Enable

HF/NMI
Enable

PRIV
Enable

MPU

Region

AP XN

Base Address

SH

Limit

Attributes EN

AP Access Protection

XN eXecute Never

faults if MCU has to read the next instruction

from an XN region

SH Shared between cores and peripherals

Attributes used for cache

AP Privileged Mode Unprivileged Mode

00 Read/Write No Access

01 Read/Write Read/Write

10 Read only No Access

11 Read only Read only

Better granularity -> there is no need for No

Access in privileged mode.

There is no need to overlap regions to obtain the required

protected memory space.

Access Protection

Memory Management
MMU

Bibliography

1. Andrew Tanenbaum, Modern Operating Systems (4th edition)

Chapter 3 - Memory Management

Subchapter 3.3 - Virtual Memory

2. Philipp Oppermann, Writing an OS in Rust

Introduction to Paging

Paging Implementation

for this section

https://os.phil-opp.com/
https://os.phil-opp.com/paging-introduction/
https://os.phil-opp.com/paging-implementation/

Memory Management

uses logical addresses

translates to physical addresses

The processor works in at least two modes:

supervisor mode

restricts access to some registers

accesses virtual addresses through Memory

Protection (if machine mode exists)

user mode

allows only ALU and memory load and store

accesses memory access through the Memory

Management Unit (MMU)

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

R
eg

io
n

2

Processor

Hypervisor (Virtual Machine Monitor)

Operating System

Application Application Application

Operating System

Machine Mode (optional)

Supervisor Mode

User Mode

R
eg

io
n

1

Configures

Memory
Management Unit

(translation)

Configures

Memory Protection
(optional)

Memory Management

memory access defined page by page

Paging

Physical Memory (RAM) is divided

in frames

Logical Memory is divided in

pages

page = frame = 4 KB (usually)

logical addresses are translated to

physical addresses using a page table

the page table is located in the

physical memory

each memory access requires at

least 2 memory accesses

Page Table

1

0

200

2

7

N/A

Physical Memory

Frame m-1

Frame 1

Frame 0

Frame 2

Logical Memory

Page n-1

Page 1

Page 0

Page 2

Page 3

Page 5

the memory unit is the page

Address
Translation

the logic address is divided

in two parts:

page index

offset within the page

the MMU translates every

logic address into a

physical address using a

page table

Page Index Offset

Logic Address

Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

page to frame

Translation
Lookaside
Buffer (TLB)

the page table is stored in

RAM

each memory access

requires 2 accesses

1. read the page table

entry to translate the

address

2. the requested access

Page Index Offset

Logic Address

Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table
TLB MIss

TLB HitTranslation
Lookaside

Buffer

caching address translation

Page
Directory

each table entry is 4B

the address space is 4GB

(for 32 bits processors)

RAM was counted in MB

when paging started being

used

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

Page
Directory

Offset

Logic Address

Page Index Frame Index Offset

Physical Address

0 Frame Index Valid Access

1 Frame Index Valid Access

2 Frame Index Valid Access

2p-1 Frame Index Valid Access

Page Table

0 Page Tabe Frame Valid Access

1 Page Table Frame Valid Access

2 Page Table Frame Valid Access

2p-1 Page Table Frame Valid Access

Page Directory
TLB Miss

TLB HitTranslation
Lookaside

Buffer

two levels, page directory and table, usually used for 32 bits systems

caching address translation

size ​ =table ​

size ​page

size ​ram

size ​ =table_32_bits ​

4 × 210

232

size ​ =table_32_bits 4MB

Page Table Entry

this is one entry of the page table

P - is the page’s frame present in RAM?

R/W - read only or read write access

U/S - can the page be accessed in user mode?

D and A - has this page been written since the OS has reset these bits?

AVL - bits available for the OS to use, ignored by MMU

0123456789111215

PR/WU/SPWTPCDADPATGAVLFrame Number

0: Invalid
1: Valid

0 - R
1 - RW

0: User
1: Super

0 - W Back
1 - W Through

CacheAccessedDirtyAttributesGlobalavailable for OS

1631

Frame Number

for x86 - 32 bits

Page Table Entry

this is one entry of the page table using Physical Address Extension (PAE)

XD - eXecute Disable (aka DEP), if set triggers a fault if an instruction is read from the page

PK - Protection Keys, allows user mode to set protection (64 bit only)

0123456789111215

PR/WU/SPWTPCDADPATGAVLFrame Number

0: Invalid
1: Valid

0 - R
1 - RW

0: User
1: Super

0 - W Back
1 - W Through

CacheAccessedDirtyAttributesGlobalavailable for OS

1631

Frame Number

32353647

Frame NumberReserved

48515258596263

ReservedAVLPKXD

available for OSProtection KeysExecute
Disable

for x86 - 32 bits with PAE

Microcontroller (MCU)

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System

costs $0.1 - $25

uses Memory Protection Unit

Microprocessor (CPU)

high operating frequency (GHz)

limited number of I/O ports

usually requires an Operating System

costs $75 - $500

uses Memory Management Unit

Integrated in embedded systems for certain tasks General purpose, for PC & workstations

Conclusion

Memory Protection Unit

Privilege Modes

Regions

Memory Management Unit

Pages

Frames

TLB

we talked about

