
Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.

I2C & USB 2.0
Lecture 7

https://wyliodrin.com/

I2C & USB 2.0

Buses

Inter-Integrated Circuit

Universal Serial Bus v2.0

used by RP2040

I2C
Inter-Integrated Circuit

Bibliography

1. Raspberry Pi Ltd, RP2040 Datasheet

Chapter 4 - Peripherals

Chapter 4.3 - I2C

2. Paul Denisowski, Understanding I2C

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.youtube.com/watch?v=CAvawEcxoPU

I2C

Used for communication between integrated circuits

Sensors usually expose an SPI and an I2C interface

Two device types:

controller (master) - initiates the communication (usually MCU)

target (slave) - receive and transmit data when the controller requests (usually the sensor)

SDA

SCL

Controller

Target
@0x12

Target
@0x17

Target
@0x5e

a.k.a I square C

Wires & Addresses
SDA - Serial DAta line - carries data from the controller to the target or from the target to the

controller

SCL - Serial CLock line - the clock signal generated by the controller, targets

sample data when the clock is low

write data to the bus only when the clock is high

each target has a unique address of 7 bits or 10 bits

wires are never driven with LOW or HIGH

are always pull-up, which is HIGH

devices pull down the lines to write LOW

SCL

SDA start address cmd ack payload bytes ack stop

SDA

SCL

Controller

Target
@0x12

Target
@0x17

Target
@0x5e

Transmission Example

1. controller issues a START condition

pulls the SDA line LOW

waits for ~ 1/2 clock periods and starts the

clock

2. controller sends the address of the target

3. controller sends the command bit (R/W)

4. target sends ACK / NACK to controller

5. controller or target sends data (depends on

R/W)

receives ACK / NACK after every byte

6. controller issues a STOP condition

stops the clock

pulls the SDA line HIGH while CLK is HIGH

Address Format

017

R/W7 bit address

1 - Read
0 - Write

Address

Transmission

SCL

SDA a6 a5 a4 a3 a2 a1 a0 r/w ack byte 1 ack byte 2 ack

data start address cmd payload bytes stop

7 bit address

Transmission Example

1. controller issues a START condition

2. controller sends 11110 followed by the upper

address of the target

3. controller sends the command bit (R/W)

4. target sends ACK / NACK to controller

5. controller sends the lower address of the target

6. target sends ACK / NACK to controller

7. controller or target sends data (depends on

R/W)

receives ACK / NACK after every byte

8. controller issues a STOP condition

Address Format

0789101115

lower addressR/Wupper address01111

address1 - Read
0 - Write

addresssignal usage of 10 bit address

Transmission

SCL

SDA a9 a8 r/w ack a7 a6 a5 a4 a3 a2 a1 a0 ack byte1 | byte2 ... ack

data start upper addr cmd lower address payload bytes stop

controller writes each bit when CLK is LOW , target samples every bit when CLK is HIGH

10 bit address

I2C Modes
Mode Speed Capacity Drive Direction

Standard mode (Sm) 100 kbit/s 400 pF Open drain Bidirectional

Fast mode (Fm) 400 kbit/s 400 pF Open drain Bidirectional

Fast mode plus (Fm+) 1 Mbit/s 550 pF Open drain Bidirectional

High-speed mode (Hs) 1.7 Mbit/s 400 pF Open drain Bidirectional

High-speed mode (Hs) 3.4 Mbit/s 100 pF Open drain Bidirectional

Ultra-fast mode (UFm) 5 Mbit/s ? Push–pull Unidirectional

Facts

Transmission half duplex data must be sent in one direction at one time

Clock synchronized
the controller and target use the same clock, there is no need for clock
synchronization

Wires SDA / SCL the same read and write wire and a clock wire

Devices
1 controller
several
targets

a receiver and a transmitter

Speed 5 Mbit/s usually 100 Kbit/s, 400 Kbit/s and 1 Mbit/s

Usage
sensors

small displays

RP2040 has two I2C devices

Embassy API

pub struct Config {

 /// Frequency.

 pub frequency: u32,

}

pub enum ConfigError {

 /// Max i2c speed is 1MHz

 FrequencyTooHigh,

 ClockTooSlow,

 ClockTooFast,

}

pub enum Error {

 Abort(AbortReason),

 InvalidReadBufferLength,

 InvalidWriteBufferLength,

 AddressOutOfRange(u16),

 AddressReserved(u16),

}

for RP2040, synchronous

1 use embassy_rp::i2c::Config as I2cConfig;

2

3 let sda = p.PIN_14;

4 let scl = p.PIN_15;

5

6 let mut i2c = i2c::I2c::new_blocking(p.I2C1, scl, sda, I2cConfig::default());

7

8 let tx_buf = [0x90];

9 i2c.write(0x5e, &tx_buf).unwrap();

10

11 let mut rx_buf = [0x00u8; 7];

12 i2c.read(0x5e, &mut rx_buf).unwrap();

Embassy API
for RP2040, asynchronous

1 use embassy_rp::i2c::Config as I2cConfig;

2

3 bind_interrupts!(struct Irqs {

4 I2C1_IRQ => InterruptHandler<I2C1>;

5 });

6

7 let sda = p.PIN_14;

8 let scl = p.PIN_15;

9

10 let mut i2c = i2c::I2c::new_async(p.I2C1, scl, sda, Irqs, I2cConfig::default());

11

12 let tx_buf = [0x90];

13 i2c.write(0x5e, &tx_buf).await.unwrap();

14

15 let mut rx_buf = [0x00u8; 7];

16 i2c.read(0x5e, &mut rx_buf).await.unwrap();

USB 2.0
Universal Serial Bus

Universal Serial Bus

Used for communication between a host and

several devices that each provide functions

Two modes:

host - initiates the communication (usually a

computer)

device - receives and transmits data when the

host requests it

each device has a 7 bit address assigned upon

connect

maximum 127 devices connected to a USB host

devices are interconnected using hubs

USB devices tree

2.0

Host

Hub

Hub Device 1 Hub

Hub Device 3

Device 4 Device 5

Device 2

Bibliography

1. Raspberry Pi Ltd, RP2040 Datasheet

Chapter 4 - Peripherals

Chapter 4.1 - USB

2. USB Made Simple

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.usbmadesimple.co.uk/

USB Device
can work as host or device, but

not at the same time

uses a differential line for

transmission

uses a 48 MHz clock

maximum 16 endpoints (buffers)

IN - from device to host

OUT - from host to device

endpoints 0 IN and OUT are used

for control

0 IN

0 OUT

1 IN

1 OUT

2 IN

2 OUT

Endpoints

USB PHY

DP

DM

Status Register

USB Device

 Clock

48 MHz

USB Packet

Token

02378111218192223262734

00JCRCENDPADDRPID!PID10000000

EOPEndpointEndpointAddressPacket IDInverted
Packet ID

SYNC

Data

0231819222330313435383946

00JCRCENDP0 - 1024 bytesPID!PID10000000

EOPEndpointEndpointDataPacket IDInverted
Packet ID

SYNC

Handshake

02367101118

00JPID!PID10000000

EOPPacket IDInverted
Packet ID

SYNC

the smallest element of data transmission

Token Packet

Type PID Description

OUT 0001 host wants to transmit data to the device

IN 1001 host wants to receive data from the device

SETUP 1101 host wants to setup the device

Address: ADDR : ENDP

02378111218192223262734

00JCRCENDPADDRPID!PID10000000

EOPEndpointEndpointAddressPacket IDInverted
Packet ID

SYNC

usually asks for a data transmission

Data Packet

Type PID Description

DATA0 0011 the data packet is the first one or follows after a DATA1 packet

DATA1 1011 the data packet follows after a DATA0 packet

Data can be between 0 and 1024 bytes

0231819222330313435383946

00JCRCENDP0 - 1024 bytesPID!PID10000000

EOPEndpointEndpointDataPacket IDInverted
Packet ID

SYNC

transmits data

Handshake Packet

Type PID Description

ACK 0010 data has been successfully received

NACK 1010 data has not been successfully received

STALL 1110 the device has an error

02367101118

00JPID!PID10000000

EOPPacket IDInverted
Packet ID

SYNC

acknowledges data

Transmission Modes
Control - used for configuration

Isochronous - used for high bandwidth, best effort

Bulk - used for low bandwidth, stream

Interrupt - used for low bandwidth, guaranteed latency

Control

Setup - send a command (GET_DESCRIPTOR, …)

Error

ErrorIdle
Token

SETUP Data,
DATA0
8 bytes

Idle

Handshake
ACK

Data - optional several transfers, host transfers data

Error

Error

Idle
Token
OUT

Data
DATA1

Idle
Handshake

ACK

Error

Error

Idle
Token
OUT

Data
DATA0

Idle
Handshake

ACK

…

Status - report the status to the host

Error

ErrorIdle
Token

IN Data,
DATA1

Idle

Handshake
ACK

used to control a device - ask for data

Control

Setup - send a command (SET_ADDRESS, …)

Error

ErrorIdle
Token

SETUP Data,
DATA0
8 bytes

Idle

Handshake
ACK

Data - optional several transfers, device transfers the
requested data

Error

Error

Idle
Token

IN

Data
DATA1

Idle
Handshake

ACK

Error

Error

Idle
Token

IN

Data
DATA0

Idle
Handshake

ACK

…

Status - report the status to the device

Error

ErrorIdle
Token
OUT Data,

DATA1

Idle

Handshake
ACK

used to control a device - send data

Isochronous

has a guaranteed bandwidth

allows data loss

used for functions like streaming where loosing a packet has a minimal impact

OUT - transfer data from the host to the device

Error

Idle
Token
OUT

Data,
DATAx

Idle

IN - transfer data from the device to the host

Error

Idle
Token

IN
Data,

DATAx

Idle

fast but not reliable transfer

Bulk

does not have a guaranteed bandwidth

secure transfer

used for large data transfers where loosing packets is not permitted

OUT - transfer data from the host to the device

Error

Device Error

Packet Error

Idle
Token
OUT

Data,
DATAx

Idle

Handshake
STALL

Handshake
NACK

Handshake
ACK

IN - transfer data from the device to the host

Error

Device Error

Packet Error

Idle
Token

IN

Data,
DATAx

Idle

Handshake
STALL

Handshake
NACK

Handshake
ACK

slow, but reliable transfer

Interrupt

the endpoint descriptor asks the host start an interrupt transfer at a time interval

used for sending and receiving data at certain intervals

OUT - transfer data from the host to the device

Error

Device Error

Packet Error

Idle
Token
OUT

Data,
DATAx

Idle

Handshake
STALL

Handshake
NACK

Handshake
ACK

IN - transfer data from the device to the host

Error

Device Error

Packet Error

Idle
Token

IN

Data,
DATAx

Idle

Handshake
STALL

Handshake
NACK

Handshake
ACK

transfer data at a minimum time interval

Device Organization

a device can have multiple configurations

for instance different functionality based on

power consumption

a configuration has multiple interfaces

a device can perform multiple functions

Debugger

Serial Port

each interface has multiple interfaces attached

endpoints are used for data transfer

maximum 16 endpoints, can be configured IN

and OUT

the device reports the descriptors in this order

configuration, interfaces, endpoints

Device
Descriptor

Configuration
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Interface
Descriptor

Endpoint
Descriptor

Endpoint
Descriptor

Connection

DeviceHost

Device

Host

device plugged in, Reset

SETUP: GET_DEVICE_DESCRIPTOR (address 0, EP 0 IN)

DATA: Device Descriptor (EP 0 IN)

Reset

SETUP: SET_ADDRESS (A) (address 0, EP 0 OUT)

ACK: (EP 0 OUT)

SETUP: GET_DEVICE_DESCRIPTOR (address A, EP 0 IN)

DATA: Device Descriptor (EP 0 IN)

ACK (EP 0 IN)

SETUP: GET_CONFIGURATION_DESCRIPTOR (1) (address A, EP 0 IN)

DATA: Configuration Descriptor (EP 0 IN)

ACK (EP 0 IN)

SETUP: SET_CONFIGURATION (1) (address A, EP 0 OUT)

ACK (EP 0 OUT)

Token SETUP Packet

0151631

wLengthwIndex

Number of bytes to transfer in DATA stepIndex of offset

324748555663

wValuebRequestbmRequestType

ValueSpecific to request

bmRequestType field

04567

RecipientTypeDirection

00000 - Device
00001 - Interface
00010 - Endpoint

00011 - Other
00100 - 11111 - Reserved

00 - Standard
01 - Class

10 - Vendor
11 - Reserved

0 - Host to Device
1 - Device to Host

The DATA packet of the SETUP Control Transfer

USB 1.0 and 2.0 Modes
Mode Speed Version

Low Speed 1.5 Mbit/s 1.0

Full Speed 12 Mbit/s 1.0

High Speed 480 Mbit/s 2.0

Facts

Transmission half duplex data must be sent in one direction at one time

Clock independent the host and the device must synchronize their clocks

Wires DP / DM data is sent in a differential way

Devices
1 host
several devices

a receiver and a transmitter

Speed 480 MBbit/s

Embassy API

use embassy_rp::usb::{Driver, Instance, InterruptHandler};

use embassy_usb::class::cdc_acm::{CdcAcmClass, State};

bind_interrupts!(struct Irqs {

 USBCTRL_IRQ => InterruptHandler<USB>;

});

let driver = Driver::new(p.USB, Irqs);

let mut config = Config::new(0xc0de, 0xcafe);

config.manufacturer = Some("Embassy");

config.product = Some("USB-serial example");

config.serial_number = Some("12345678");

config.max_power = 100;

config.max_packet_size_0 = 64;

// Required for windows compatibility.

config.device_class = 0xEF;

config.device_sub_class = 0x02;

config.device_protocol = 0x01;

config.composite_with_iads = true;

for RP2040, setup the device

// It needs some buffers for building the descriptors.

let mut config_descriptor = [0; 256];

let mut bos_descriptor = [0; 256];

let mut control_buf = [0; 64];

let mut state = State::new();

let mut builder = Builder::new(

driver,

config,

&mut config_descriptor,

&mut bos_descriptor,

&mut [], // no msos descriptors

&mut control_buf,

);

// Create classes on the builder.

let mut class = CdcAcmClass::new(&mut builder, &mut state, 64

// Build the builder.

let mut usb = builder.build();

// Run the USB device.

let usb_driver = usb.run();

Embassy API
for RP2040, use the USB device

1 let echo_loop = async {

2 loop {

3 class.wait_connection().await;

4 info!("Connected");

5 let _ = echo(&mut class).await;

6 info!("Disconnected");

7 }

8 };

9

10 // Run everything concurrently.

11 join(usb_driver, echo_loop).await;

1 async fn echo<'d, T: Instance + 'd>(class: &mut CdcAcmClass<'d, Driver<'d, T>>) -> Result<(), EndpointError> {

2 let mut buf = [0; 64];

3 loop {

4 let n = class.read_packet(&mut buf).await?;

5 let data = &buf[..n];

6 info!("data: {:x}", data);

7 class.write_packet(data).await?;

8 }

9 }

Sensors
Analog and Digital Sensors

Bibliography

BOSCH, BMP280 Digital Pressure Sensor

Chapter 3 - Functional Description

Chapter 4 - Global memory map and register description

Chapter 5 - Digital Interfaces

Subchapter 5.2 - I2C Interface

for this section

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Sensors

Analog
only the transducer (the analog sensor)

outputs (usually) voltage

requires:

an ADC to be read

cleaning up the noise

Voltage
Output

Digital
consists of:

a transducer (the analog sensor)

an ADC

an MCU for cleaning up the noise

outputs data using a digital bus

MCU
 I/O Bus

Digital
Interface

ADC

Cleanup

Reg1

RegN

analog and digital

BMP280 Digital Pressure Sensor

Datasheet

schematics

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

BMP280 Digital Pressure Sensor

Datasheet

registers map

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Reading from a digital sensor
using synchronous/asynchronous I2C to read the press_lsb register of BMP280

1 const DEVICE_ADDR: u8 = 0x77;

2 const REG_ADDR: u8 = 0xf8;

3

4 i2c.write(DEVICE_ADDR, &[REG_ADDR]).unwrap();

5

6 let mut buf = [0x00u8];

7 i2c.read(DEVICE_ADDR, &mut buf).unwrap();

8

9 // use the value

10 let pressure_lsb = buf[1];

1 const DEVICE_ADDR: u8 = 0x77;

2 const REG_ADDR: u8 = 0xf8;

3

4 i2c.write(DEVICE_ADDR, &[REG_ADDR]).await.unwrap();

5

6 let mut buf = [0x00u8];

7 i2c.read(DEVICE_ADDR, &mut buf).await.unwrap();

8

9 // use the value

10 let pressure_lsb = buf[1];

Writing to a digital sensor
using synchronous/asynchronous I2C to set up the ctrl_meas register of the BMP280 sensor

1 const DEVICE_ADDR: u8 = 0x77;

2 const REG_ADDR: u8 = 0xf4;

3

4 // see subchapters 3.3.2, 3.3.1 and 3.6

5 let value = 0b100_010_11;

6

7 i2c.write(DEVICE_ADDR, &[REG_ADDR]);

8

9 let buf = [REG_ADDR, value];

10 i2c.write(DEVICE_ADDR, &buf).unwrap();

1 const DEVICE_ADDR: u8 = 0x77;

2 const REG_ADDR: u8 = 0xf4;

3

4 // see subchapters 3.3.2, 3.3.1 and 3.6

5 let value = 0b100_010_11;

6

7 i2c.write(DEVICE_ADDR, &[REG_ADDR]);

8

9 let buf = [REG_ADDR, value];

10 i2c.write(DEVICE_ADDR, &buf).await.unwrap();

Conclusion

Buses

Inter-Integrated Circuit

Universal Serial Bus v2.0

we talked about

