UART & SPI

Lecture 5

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

UART & SPI

used by RP2350 and STM32U545RE

» Direct Memory Access

= Buses
= Universal Asynchronous Receiver and Transmitter
= Serial Peripheral Interface

= Analog and Digital Sensors

DMA

Direct Memory Access

Bibliography

for this section

1. Raspberry Pi Ltd, RP2350 Datasheet

= Chapter 12 - Peripherals
= Chapter 16.6 - DMA

2. STMicroelectronics, STM32U545RE Reference Manual

= Chapter 17 - General purpose direct memory access controller

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf

DMA

= offloads the MCU from doing memory to
memory operations

= due to MMIO, usually implies transfers
from and to peripherals

= raises an interrupt when a transfer is done

1. DMA does not know about the data stored
in cache.

= for chips that use cache
= the DMA buffer’s memory region has to
be set manually to nocache (if MCU
knows)
= or, the cache has to be flushed before

and, possibly after, a DMA transfer

K Processor \
Registers Processing
[0] [add]
[rl] [sub]
>
[r2] [and]
v

Memory Read/Write [mov] [load] [store] I
2
E— | t

Memory

word 0

IRQ

N

Channel 0

Channel 3

/Direct Memory Access
Source Destination e
Address Address

Channel 1

Source Destination ley
Address Address

Source Destination lan
Address Address

~

)

word 1

Y Y

word 2

word N

RP2

12 (RP2040) channels or 16 (RP2350) channels

Transfers

Memory to Peripheral
Peripheral to Memory
Memory to Memory

STM32U545RE

= 16 General Purpose DMA (GPDMA) channels
= 4 Low Power DMA (LPDMA) channels

= 4 priority levels

= Transfers

Memory to Peripheral
Peripheral to Memory
Memory to Memory

Peripheral to Peripheral

UART

Universal Asynchronous Receiver and Transmitter

Bibliography

for this section

1. Raspberry Pi Ltd, RP2350 Datasheet

= Chapter 12 - Peripherals
= Chapter 12.1 - UART

2. STMicroelectronics, STM32U545RE Reference Manual

= Chapter 66 - Universal synchronous/asynchronous receiver transmitter

3. Paul Denisowski, Understanding Serial Protocols

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.youtube.com/watch?v=LEz5UCN3aHA
https://www.youtube.com/watch?v=sTHckUyxwp8

UART

aka serial port

= connects two devices
= uses two independent wires MCU

»m TX-transmission wire

Device

= RX -reception wire

= cross-connected

Transmission example

cook f [F 1A LF LA LA LA LA LA LA LF LA
elecrical signal ~ |\ / b7 X b6 X B5 X b4a X b3 X b2 X b1 X b0 X p / //—
data 777/ start\ payload Yparity _stop X7 %Z

UART Device

properties

bits

parity

stop

baud
rate

the number of bits in

the payload,
between 5 and 9

add or not the parity
bit

the number of stop
bits to add, 1 or 2

number of elements
sent per s, most
used 9600 or
115200

/ Ve ™ Universal Serial \
Receiver (RX) Asynchronous Receiver
and Transmitter
RX Data (Enable RX IRQ
< RX FIFO RX IRQ
L Enable RX]
\ ,—* ,ﬁ ')
N Clock . Stop
@ Clock > Divider J [Format
a Transmitter (TX)
(Enable TXIRQ | | 'X'RQ
TX Data
> TX FIFO
L Enable TX
USART IRQ \)
baud f clock
AUCrgte =

> Line Encoder

divider x (1 + payloady; + parityyys + stopuiss)

UART D eVi Ce / Universal Serial \
Recelver (R0) Rt
RX Data Enable RXIRQ | |
typeS «— RX FIFO] L—J - RXIRQ
» TTL- Transistor Transistor Logic : = 2
Clock —)[[():il‘zgl;][Format .-Parity -?;:5 }
connects devices at 0-3.3Vor 0-5V, used = D
for short cables and jumper wires Tranemiter (09
T Data Enable TX IRQ | | 'X'RQ -

= RS232 -used for external connections RSE {mj

and longer cables, uses -12V to 12V. IR 5
m RS485 - industrial, uses differential

Straight cable connection
DB-9 Female DB-0 Male

voltage

Receiver

RX part of the serial port

/Receiver \
/RX FiFO Register \
< [Data Register
Read Data
[Data Register
Data Register

{[wHmHbzHMHMHwHwHw]«%@%—

%

|
|
—>
RX Line
|

&~ o

Universal Serial
Asynchronous Receiver
and Transmitter

Receiver (RX)
‘ Enable RX IRQ ‘

RX Data Line Decoder

RX FIFO RXIRQ

| EnableRX |

Clock Smp
o) o o 52

Transmitter (TX)

) | Enable TXIRQ | | X'%Q

TX Data Line Encoder

TXFIFO

| EnableTx |

USART IRQ

/

Shift Register to read serially every
bit

Triggers an interrupt

= when data was received

= (optional) when FIFO is half full
= (optional) when FIFO is full
FIFO is optional

= may have a capacity of 1

Transmitter

TX part of the serial port

Write Data

Clock
Divider

Transmitter
TX FiFO Register \
> Data Register
Data Register
Data Register

Format %trt)s TX Enable

TX IRQ
Enable

TX Line
—>

O~ s

Universal Serial
Asynchronous Receiver
and Transmitter

Receiver (RX)

RX Data | Enable RXRQ | Line Decoder

RX FIFO RXIRQ

| EnableRX |

clock | [—(Stop ||
) o e)

Transmitter (TX)

‘ Enable TX IRQ ‘ 1RSI .
Line Encoder

TX Data
—_— TXFIFO

| EnableTx |

USART IRQ

/

Shift Register to output serially every
bit

Triggers an interrupt

= when data was sent

= (optional) when FIFO is half empty
= (optional) when FIFO is empty
FIFO is optional

= may have a capacity of 1

-
Transmission Examples

Setup Payload Parity Stop
8N1 8 bits no 1 bit
8P2 8 bits yes 2 bits
9P1 9 bits yes 1 bit
CIock{ f f f f f f f f f f f f f f L/
_, [elecrical signal \ /b7 \b6 \B5) b4 b3 b2 \ b1 { b0/ /B
Z
® L data %startx payload Xstop% %Z
« [elecrical signal \ /b7 {06 \B5) b4 \b3 b2)bt Y00 p / /B
o
® L data %startx payload XparityX stop V %Z
_ [elecrical signal \ /b8)Y b7 \b6) B5)Yb4 b3 b2 bl bo)op / /B
o
< data %startx payload Xparitsttop)W %Z

Successive Transmission

using the 8N1 data format

Back to back
ock L F LA L L LA L L L L L L L L L L L L L L L L L
elecricalsignal \ /b7 \ b6 Y\ B5 Y b4 Y b3 b2 \ b1 Y b0/ \ /b7 b6 \B5) b4 X b3 b2) bl) bo/ f
data 777X start) byte X stop) start byte X'stop ¥/ %Z
With delay
S ialiaiaiaiaiaiaiaiaRaRaialy faRaRaRaRaRaRaRaRaRaRaly s
elecrical signal \ /b7 b6 Y B5) ba b3 b2) bL)bo/ T\ /o7 \ b6 {5 Y b4 }(b3 Y b2 J b1 Y b0 / T

data 77/) start byte 'stop X/ %@ start { byte Xstop ¥/ %Z

Facts

Transmission

Clock

Wires
Devices

Speed

duplex

independent

RX/TX

115KB/s

data can be sent in both directions at the same time

there is no clock sent between the two devices, the receiver has to
synchronize its clock with the transmitter to be able to correctly read the
received data

one receive write, one transmit wire, independent of each other
areceiver and a transmitter

usually a maximum baud rate of 115200 is used

MCU Device

[
-

Y] =
!E

sage

= print debug information

= device console

= RP2350 has two USART devices

= STM32U545RE has two full (UASRT1, USART?3), two basic (UART4, UARTS5) and one low power (LPUART1)

RP2350
 uarToTx §12c0SDA] spioRx | GPO- R} Ly veus | W Power
| UARTO RX § 12C0SCL | SPi0CSn §GP1F¥] £ B Ground
3 a8 B UART/ UART (default)
4 3 W GPIO, PO, and PWM
| i2c1scL} sPioTx §GP3) 36 |t
6 3% B sPI/SPI (default)
LuART1 RX] 12c0scL | spiocsn § GRS i} £ M 12¢ /12 (default)
8 £
| 12c1sDA § sPiosck §—GP6 _J) 2 B Debugging
10 3
L UART1 TX § 12C0SDA] _sPi1RX J GP8 R £l
| UART1 RX} 12C0 SCL | SPi1 CSn §—GP9 i) 5 Infineon 43439
" Fy P21]
| i2ciscL§ spiiTx | GP11 R %
16 %
7 %
8 s
19 2

[2c1sCL{ s §GP15 Rl g GP16 J sPORX] 12C0SDA JUARTOTX |

N1OMS
[}

Synchronous Embassy API

pub enum StopBits {
STOP1,
STOP2,

for RP2350

pub struct Config { pub enum DataBits {
pub baudrate: u32, DataBits5,
pub data_bits: DataBits, DataBitsé6,
pub stop bits: StopBits, DataBits7,
pub parity: Parity, DataBits8,
/] ... }

}
1 use embassy_rp::uart::Config as UartConfig;
2 let config = UartConfig::default();
3
4 // use UARTO, Pins © and 1
5 let mut uart = uart::Uart::new_blocking(p.UARTO, p.PIN_ O, p.PIN_1, config);
6 // write
7 uart.blocking _write("Hello World!\r\n".as_bytes());
8
9 // read 5 bytes

10 let mut buf = [0; 5];

11 uart.blocking_read(&mut buf);

pub enum Parity {
ParityNone,
ParityEven,
ParityOdd,

Synchronous Embassy API

for STM32U545RE

pub struct Config { pub enum DataBits { pub enum StopBits {
pub baudrate: u32, DataBits7, STOP1,
pub data_bits: DataBits, DataBits8, STOPOP5
pub stop bits: StopBits, DataBits9, STOP2,
pub parity: Parity,) STOP1P5
/] ... }

}
1 use embassy_stm32::usart::Config as UartConfig;
2 let config = UartConfig::default();
3
4 // use UART1, Pins PA10 and PA9
5 let mut uart = Uart::new_blocking(p.USART1, p.PA1@, p.PA9, config).unwrap();
6 // write
7 uart.blocking _write("Hello World!\r\n".as_bytes());
8
9 // read 5 bytes

10 let mut buf = [0; 5];

11 uart.blocking_read(&mut buf);

pub enum Parity {
ParityNone,
ParityEven,
ParityOdd,

Asynchronous Embassy API

for RP2350
1 use embassy_rp::uart::Config as UartConfig;
2
3 bind_interrupts!(struct Irqgs {
4 UARTO_TRQ => BufferedInterruptHandler<UARTO>;
5 3
6
7 let config = UartConfig::default();
8
9 // use UARTO, Pins © and 1
10 let mut uart = uart::Uart::new(p.UARTO, p.PIN_O, p.PIN_1, Irgs, p.DMA_CHO, p.DMA_CH1l, config);
11
12 // write
13 uart.write(""Hello World!\r\n'".as_bytes()).await;
14
15 // read 5 bytes
16 let mut buf = [0; 5];
17 uart.read(&mut buf).await;

Asynchronous Embassy API

for STM32U545RE
1 use embassy_stm32::usart::Config as UartConfig;
2
3 bind_interrupts!(struct Irqgs {
4 USART1 => usart::InterruptHandler<peripherals: :USART1>;
5 3
6
7 let config = UartConfig::default();
8
9 // use USART3, Pins PA1©@ and PA9
10 let mut uart = Uart::new(p.USART1, p.PA1@, p.PA9, Irqgs, p.GPDMA1_CHO, p.GPDMA1l_CH1, config).unwrap();
11
12 // write
13 uart.write(""Hello World!\r\n'".as_bytes()).await;
14
15 // read 5 bytes
16 let mut buf = [0; 5];
17 uart.read(&mut buf).await;

SPI

Serial Peripheral Interface

Bibliography

for this section

1. Raspberry Pi Ltd, RP2350 Datasheet

= Chapter 12 - Peripherals
= Chapter 12.3-SPI

2. STMicroelectronics, STM32U545RE Reference Manual

= Chapter 68 - Serial Peripheral Interface

3. Paul Denisowski, Understanding SPI

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.youtube.com/watch?v=0nVNwozXsIc

SPI

a.k.a spy

= Used for communication between integrated circuits

= Sensors usually expose an SPI and an I2C interface

= Two device types:

= main (master) - controls the communication (usually MCU)

= sub (slave) - receive and transmit data when the main requests (usually the sensor)

Main

MOsI

CLK

Wires

3+n

= MOSI - Main Out Sub In - carries data from the main to the subs

= MISO - Main In Sub Out - carries data from the active sub to the main

» CLK - Clock - the clock signal generated by the main, subs sample and write data to the bus only on the clock
edge

= (CS*- Chip Select - not actually part of SPI, one wire / sub, activates one sub at a time

®» jnactive subs have to disconnect from the MOSI and MISO lines

cs T\ [T
oo PP | | |
mosi ——(bN-1)(b/ }(b5 }b4 Y b3 Y b2 \ b1 \ bo —fF »
MISO ———(oN-2) bJJ {65)} b4) b3 }(b2)} bL)\ b0 p—ff) v [v I v
data 77\ /[payload (N bits) 7 %4 ‘ S ‘ ‘ St ‘ St

Transmission Example

1.

main activates the sub device

= setsthe CS signalto LOW

. at the same time

= main puts the first bit onthe MOSI line

= sub puts the first bit on the MISO line

3. main starts the clock

. at the rising edge

» mainreads the data from the MISO line

= subreads the data from the MOSI line

. on the falling edge

= main puts the next bit onthe MOSI line

= sub puts the next bit onthe MISO line

. repeat 4 and 5 until main decides to stop the clock

%
SPI Signals

cs T\ i
cos FLFJELALILFLFLFL
mosi ——bN-1)(b// Y65 Y ba Y b3 b2) b1 } b0 p——fF
miso ——bN-1)(b// Y65 Y ba Y b3 b2) b1 } b0 »——fF

data) /| payload (N bits) 7 %4
SPI Network
Main E : E
“““““ 2 2N 20

‘ Sub J ‘ Sub ‘ Sub
x A
cs < e
I I

SPI Modes

when data is read and

written

Mode

CPOL

CPHA

CPOL

CPHA Clock phase

Clock CPOL=0 ENEYERENENENENESE L/
clockcrol=t V[Y Vv ¥ T YY1} f]

CPHA =0

=1

CPHA

-

MOSI _MD(b5Xb4Xb3Xb2Xb1Xb0>ﬂL
miso ——bN-1{]/ Yb5) ba b3 } b2 (b1 \ b0 p——fF
data 7/ // payload (N bits) X %ﬁ
MosI ——(oN-1) bj/ b5 Y b4) b3\ b2 } b1 b0 ——fF
MISO —@(le}'@(b X b5 }(ba Y b3 Y b1 (b0 ——fF
data // payload (N bits) W %ﬁ

The idle level of the clock when no data is being sent.
Clock polarity 0: Clock is LOW when idle.

1: Clock is HIGH when idle.

That clock edge used to read the data bit.

1: Data sampled on the 2™ clock edge (the trailing edge).

0: Data sampled on the 15t clock edge (the leading edge).

-
Transmission Example

one main, two subs

cock _ FL AL L J fFurfurrrrre
Mosi ——(bN-1)(b// (b5) b4 \ b3 \ b2 \ bL } b0 » J——(bN-1Y]/ Y b5 }b4 J(b3 Y b2 b1 Y b0 ——JF

Z[cs1 .\ /[/ J/

@ | miso ——(bN-1) b\ b5) b4 }(b3 \ b2 } b1 } b0 » a i

o { cs2 Ji \ I [T

@| MISO / J——(oN-1) bJ/ b5 Y ba Y b3) b2 J bL Y b0 p———
data 7\ /| payload to/from sub 1 V% N /| payload to/from sub 2 V% %Z

1. main activates the CS pin of sub 1 7. main activates the CS pin of sub 2

2. main writes the first bit on MOSI, sub 1 writes the 8. main writes the first bit on MOSI, sub 2 writes the

first bit on MISO first bit on MISO

3. main starts the clock 9. main starts the clock

4. main and sub 1 send the rest of the bits 10. main and sub 2 send the rest of the bits

5. main stops the clock 11. main stops the clock

6. main deactivates the CS pin of sub 1 12. main deactivates the CS pin of sub 2

Daisy Chaining

using several SPI devices together

1. main activates all the subs
2. on the clock edge
= main sends data to sub 1

sub 1/ sends data to sub 2

sub n-1 sends data to sub n

sub n sends data to main

1. usually subs send the previous data
bit received from main to the next
sub <

activate all the sub devices

D

MOSI

Main

CLK

Sub

Facts

Transmission

Clock

Wires

Devices

Speed

duplex

synchronized

MISO / MOSI/ CLK /
CS

1 main
several subs

no limit

data must be sent in both directions at the same time

the main and sub use the same clock, there is no need for clock
synchronization

different read and write wires, a clock wire and an optional chip select
wire for every sub

areceiver and a transmitter

does not have any limit, it is limited by the main clock and the
electronics wirings

Usage

= EEPROMs / Flash (usually in QSPI mode)
= Raspberry Pi Pico has its 2MB Flash connected using QSPI

= sensors /small displays
= RP2350 has two SPI devices
m STM32U545RE has two full SPI devices and one limited SPI device

Synchronous Embassy API - RP2350

pub struct Config { pub enum Phase { pub enum Polarity {
pub frequency: u32, CaptureOnFirstTransition, IdleLow,
pub phase: Phase, CaptureOnSecondTransition, IdleHigh,
pub polarity: Polarity, } }
}
1 use embassy_rp::spi::Config as SpiConfig;
2 let mut config = SpiConfig: :default();
3 config.frequency = 2_000_000;
4
5 let miso = p.PIN_12;
6 let mosi = p.PIN_11;
7 let clk = p.PIN_10;
8 let mut spi = Spi::new_blocking(p.SPI1, clk, mosi, miso, config);
9
10 // Configure CS
11 let mut cs = Output::new(p.PIN_X, Level::High);
12
13 cs.set_Llow();
14 let mut buf = [0x90, 0x00, Ox00, Oxd9, Ox00, Ox00];
15 spi.blocking_transfer_in_place(&mut buf);
16 cs.set_high();

Synchronous Embassy API - STM32U545RE

pub struct Config { pub struct Mode { pub enum Phase { pub
pub mode: Mode, pub polarity: Polarity, CaptureOnFirstTransition,
pub bit order: BitOrder, pub phase: Phase, CaptureOnSecondTransition, 3
pub frequency: Hertz, 3 3
pub miso_pull: Pull, pub enum Polarity { pub enum BitOrder {
pub gpio_speed: Speed, IdleLow, IdleHigh, LsbFirst, MsbFirst,
} 3 3
1 use embassy_stm32::spi::Config as SpiConfig;
2 let mut config = SpiConfig::default();
3 config.frequency = Hertz(1l_000_000);
4
5 let miso = p.PA6;
6 let mosi = p.PA7;
7 let clk = p.PAS5;
8 let mut spi = Spi::new_blocking(p.SPI1, clk, mosi, miso, config);
9
10 // Configure CS
11 let mut cs = Output::new(p.PXn, Level::High, Speed::Low);
12
13 cs.set_low();
14 let mut buf = [0x90, 0x00, 0x00, Oxd9, 0x00, 0x00];

enum Speed { Low,
Medium, High, VeryHigh,

Asynchronous Embassy API

for RP2040

1 use embassy_rp::spi::Config as SpiConfig;

2 let mut config = SpiConfig::default();

3 config.frequency = 1 _000_000;

4

5 let miso = p.PIN_12;

6 let mosi = p.PIN_11;

7 let clk = p.PIN_10;

8 let mut spi = Spi::new(p.SPI1, clk, mosi, miso, p.DMA_CHO, p.DMA_CH1, config);
9
10 // Configure CS
11 let mut cs = Output::new(p.PIN_X, Level::High);
12
13 cs.set_low();
14 let tx_buf = [1 u8, 2, 3, 4, 5, 6];
15 let mut rx_buf = [0_u8; 6];
16 spi.transfer(&mut rx_buf, &tx_buf).await;
17 cs.set_high();

Asynchronous Embassy API

for STM32U545RE

1 use embassy_stm32::spi::Config as SpiConfig;

2 let mut config = SpiConfig::default();

3 config.frequency = Hertz(1_000_000);

4

5 let miso = p.PIN_12;

6 let mosi = p.PIN_11;

7 let clk = p.PIN_10;

8 let mut spi = Spi::new(p.SPI1, clk, mosi, miso, p.GPDMA1_CHO@, p.GPDMA1_CH1, config);
9
10 // Configure CS
11 let mut cs = Output::new(p.PIN_X, Level::High, Speed::Low);
12
13 cs.set_low();
14 let tx_buf = [1 u8, 2, 3, 4, 5, 6];
15 let mut rx_buf = [0_u8; 6];
16 spi.transfer(&mut rx_buf, &tx_buf).await;
17 cs.set_high();

Sensors

Analog and Digital Sensors

Bibliography
for this section

BOSCH, BMP280 Digital Pressure Sensor

= Chapter 3 - Functional Description
= Chapter 4 - Global memory map and register description
= Chapter 5 - Digital Interfaces

= Subchapter 5.3 - SPI Interface

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Sensors

analog and digital

Analog

= only the transducer (the analog sensor)
= outputs (usually) voltage
® requires:

= an ADC to be read

= cleaning up the noise

Voltage
((®) Output

Digital

= consists of:
= atransducer (the analog sensor)
= an ADC
= an MCU for cleaning up the noise

= outputs data using a digital bus

Digital

Interface 1/0 Bus

RegN

|
J

BMP280 Digital Pressure Sensor

schematics

Datasheet

Pressure/
temperature
sensing
element

VDD"' VDDlo,_|
| |
Voltage Voltage
regulator reference
(analog &
digital) | | Lepi
n
t
—{1SDO
fAnalogd N .- B | .
ront-en Lol S
Fliisck
a
c
e
OSC|POR|NVM csB
osclPoriNvM] |
GND™—

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

BMP280 Digital Pressure Sensor

registers map

Datasheet

Register Name Address bit7 bité bit5 bit4 bit3 bit2 bit1 bit0 l:te:t:t
temp xIsb 0xFC temp xIsb<7:4> 0 0 0 0 0x00
temp Isb 0OxFB temp Isb<7:0> 0x00
temp msb OxFA temp _msb<7:0> 0x80
press xisb 0OxF9 press xlsb<7:4> [0 0 0 | 0 0x00
press Isb 0xF8 press Isb<7.0> 0x00
press_msb 0xF7 press_msb<7:0> 0x80
config 0xF5 t_sb[2:0] filter[2:0] . |spiaw enfo] 0x00
ctrl_meas OxF4 osrs t[2:0] osrs_p[2:0] mode[1:0] 0x00
status 0xF3 S “‘IilliilliIilimeasuringIO][lIillIIllIilliillIIilIIilIIillIilIIiim update[O] 0x00
reset 0xEOQ reset[7:0] 0x00
id 0xD0 chip_id[7:0] 0x58
calib25...calib00 [OxA1...0x88 calibration data individual
Registers: | | Calibration CO_ntroI D_ata St_atus Revision Reset
data reqgisters registers registers
Type: read only |read/write| read only | read only | read only | write only

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf

Reading from a digital sensor

using synchronous/asynchronous SPI to read the press_1lsb register of BMP280

Clockw

Mosl —— 1 X1 X1 X1 X1 X0XO0XO0X 77 72—
MISO ——— //Xb7Xb6Xb5Xb4Xb3Xb2Xb1XbO>—
data X riw X register address (press_Ish, Oxf8) W %(register value (press_lIsb) W
const REG_ADDR: u8 = Oxf8; const REG_ADDR: u8 = Ox£8;
cs.set_low(); cs.set_Llow();
let mut buf = [(1 << 7) | reg, 0x00]; let tx_buf = [(1 << 7) | REG_ADDR, 0x007;
spi.blocking_transfer_in_place(&mut buf); let mut rx_buf = [Qu8; 27;

spi.transfer(&mut rx_buf, &tx_buf).await;

cs.set_high();
cs.set_high();

let pressure_lsb = buf[1];

Writing to a digital sensor

using synchronous/asynchronous SPI to set up the ctrl_meas register of the BMP280 sensor

C'ockw

Mol —— 0 X 1 X 1 X1 KXo X1XO0XO0)X777k1 X0 0}oKx1) oXxLxly —

MISO ——

Zr ‘

data 77X rlw X register address (ctrl_meas, Oxf4)

osts X osts_p X “mode W

const REG_ADDR: u8 = 0xf4;

let value = 0blO0 010 11;

cs.set_low();

let mut buf = [I1(1 << 7) & reg, value];

spi.blocking_transfer_in_place(&mut buf);

cs.set_high();

const REG_ADDR: u8 = 0xf4;

let value = 0bl00 010 11;

cs.set_Llow();

let tx_buf = [!1(1 << 7) & REG_ADDR, value];
let mut rx_buf = [Qu8; 27;
spi.transfer(&mut rx_buf, &tx_buf).await;

Conclusion

we talked about

» Direct Memory Access

= Buses
= Universal Asynchronous Receiver and Transmitter
= Serial Peripheral Interface

= Analog and Digital Sensors

