PWM and ADC

Lecture 4

Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.


https://wyliodrin.com/

PWM and ADC

= Counters

= Timers and Alarms

=  About Analog and Digital Signals

= Pulse Width Modulation (PWM)

= Analog to Digital Converters (ADC)



Timers



Bibliography
for this section

Raspberry Pi Ltd, RP2040 Datasheet

= Chapter 2 - System Description
= Chapter 2.15 - Clocks
= Subchapter 2.15.1
= Subchapter 2.15.2
=  Chapter 4 - Peripherals
= Chapter 4.6 - Timer


https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Clocks

all peripherals and the MCU use a clock to execute at certain intervals

Source Usage

external crystal a stable frequency is required, for

(XOSC) instance when using USB
internal ring low frequency, in between 1.8 - 12
(ROSC) MHz (varies)

Embassy initializes the Raspberry Pi Pico with the
clock source from the 12 MHz crystal.

1 let p = embassy_rp::init(Default::default());

External clocks &—

or

Relaxation
oscillators |Z_

[l

GPCLKO -1
from
GPIO Muxing

USB PLL

>

System PLL

—

Clock
sources

(X0SC)

Crystal Oscillator|

Ring Oscillator
(ROSC)

ik gpouto-3 GPIO Muxing
clk_ade e
clk_usb Us
clk_rtc Rue
T UART+SPI

Processors, Bus fabric,
Memories &

clk_sys

Memory -mapped registers

Helilelalel?

Frequency counter

Clocks

clk_ref

Watchdog & Timers




Frequency divider

stabilizing the signal and adjusting it

1.
2.

divides down the clock signals used for the timer, giving reduced overflow rates

allows the timer to be clocked at a user desires the rate

[2]
2]
lock <@
cloc = - Duty cycle Wake and Generated clock
sources 2 correction Sleep enable
[©]
Divider enable
clocksource [ LI LT LT LT LI LT L L L L L L L L L L
Generated clock J I I I I
< Divide by 2 > <€ Divide by 3 >

<
<

Y

Divide by 2.4



Counter

increments a register at every clock cycle

Registers

value

direction

reset

Description

the current value of the
counter

set to count UP or DOWN

UP: the value at which the
counter resets to @
DOWN: the value to which
the counter resets after
gettingto ©

Clock ||||||||||||
/
Counter l
value ]—)
CMP
>
[ direction J [ reset_value J

=

J




SYSTICk SYST_CSR register

Bits Name Description Type Reset
ARM Cortex-M time counter 3117 |Reserved.
16 COUNTFLAG Returns 1 if timer counted to 0 since last time this was RO 0x0
The ARM Cortex-MO+ registers start at a base address of 8xe0000000 (defined as PPB_BASE in SDK). read. Clears on read by application or debugger.
Offset Name Info 15:3 Reserved.
0xe010 SYST_CSR SysTick Control and Status Register 2 CLKSOURCE SysTick clock source. Always reads as one if SYST_CALIB | RW 0x0
reports NOREF.
0xe014 SYST_RVR SysTick Reload Value Register Selects the SysTick timer clock source:
0xe018 SYST_CVR SysTick Current Value Register 0 = External reference clock.
1 = Processor clock.
Oxe01c SYST_CALIB SysTick Calibration Value Register

1 TICKINT Enables SysTick exception request: RW 0x0
- deCI‘ementS the Value Of SYST_CVR every IJ,S 0 = Counting down to zero does not assert the SysTick

exception request.
1 = Counting down to zero to asserts the SysTick

u When SYST_CVR becomes 0 : exception request.

0 ENABLE Enable SysTick counter: RW 0x0
0 = Counter disabled.
1 = Counter enabled.

= triggers the SysTick the exception

= next clock cycle sets the value of SYST_CVR to 1

SYST_RVR f= SYST RVE
=  SYST CALIB isthevalue of SYST RVR fora 10ms

x 1,000,000 Hz|g;

interval (might not be available)



SysTick

ARM Cortex-M peripheral

The ARM Cortex-MO+ registers start at a base address of 8xe0000000 (defined as PPB_BASE in SDK).

Offset Name Info

0xe010 SYST_CSR SysTick Control and Status Register

0xe014 SYST_RVR SysTick Reload Value Register

0xe018 SYST_CVR SysTick Current Value Register

Oxe01c SYST_CALIB SysTick Calibration Value Register
1 const SYST _RVR: *mut u32 = Oxe@B0 eBl4 as *mut u32;
2 const SYST_CVR: *mut u32 = Oxe@00_e018 as *mut u32;
3 const SYST_CSR: *mut u32 = Oxe@00_e010 as *mut u32;
4
5 // fire systick every 5 seconds
6 let interval: u32 = 5_000_000;
7 unsafe {
8 write_volatile(SYST_RVR, interval);
9 write_volatile(SYST_CVR, 0);

10 // set fields "ENABLE® and 'TICKINT®

11 write_volatile(SYST_CSR, @bll);

12 }

SYST_CSR register

Bits

Description

Type

Reset

31:17

Reserved.

16

COUNTFLAG

Returns 1 if timer counted to 0 since last time this was
read. Clears on read by application or debugger.

0x0

Reserved.

CLKSOURCE

SysTick clock source. Always reads as one if SYST_CALIB
reports NOREF.

Selects the SysTick timer clock source:

0 = External reference clock.

1 = Processor clock.

0x0

TICKINT

Enables SysTick exception request:

0 = Counting down to zero does not assert the SysTick
exception request.

1 = Counting down to zero to asserts the SysTick
exception request.

RW

0x0

ENABLE

Enable SysTick counter:
0 = Counter disabled.
1 = Counter enabled.

RW

0x0

Register SysTick handler

1
2
3
4

#[ exception]
unsafe fn SysTick() {
/* systick fired */



Alarm

counter that triggers interrupts after a time

interval

Registers

value

direction

reset

alarm_x

Description

the current value of the
counter

set to count UP or DOWN

UP: max value before 0
DOWN: value after ©

when value ==
alarm_x ,triggers an
interrupt, x in 1 ... n

/ Y Counter | Alarm \
\ 4
Up / Down value |—>
CMP.
A >
direction | reset_value I
| alarm_value 1 . | alarm_value N
l \4
IRQ_ALARM_1 ~ sssenens IRQ_ALARM_N



RP2040’s Timer

stores a 64 bit number ( reset is 2%41)
starts with @ at (the peripheral’s) reset
increments the number every s

in practice fully monotonic (cannot over flow)

allows 4 alarms that trigger interrupts

= TIMER_IRQ O
= TIMER IRQ 1
= TIMER IRQ 2
= TIMER IRQ 3
alarm_0 ... alarm_3 registers are only 32 bits

wide

Counter | Alarm ¢

value

—>
CMP.

direction

alarm_value 1 44:'

Y

reset_value

alarm_value N

IRQ_ALARM_1  «eennnns IRQ_ALARM_N



RP2040’s Timer

read the number of elapsed ps since reset

The Timer registers start at a base address of 0x40054000 (defined as TIMER_BASE in SDK).

Offset Name Info

0x00 TIMEHW Write to bits 63:32 of time
always write timelw before timehw

0x04 TIMELW Write to bits 31:0 of time
writes do not get copied to time until timehw is written

Reading the time elapsed since restart

const TIMERLR: *const u32 = 0x4005_400c;
const TIMERHR: *const u32 0x4005_4008;

let time: u64 = unsafe {
let low = read_volatile(TIMERLR);
let high = read_volatile(TIMERHR);
high as u64 << 32 | low

0 NONUu1AWN R

The reading order maters as reading TIMELR
latches the value in TIMEHR (stops being updated)
until TIMEHR is read. Works only in single core.

Offset Name Info

0x08 TIMEHR Read from bits 63:32 of time
always read timelr before timehr

0x0c TIMELR Read from bits 31:0 of time

0x10 ALARMO Arm alarm 0, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARMO == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x14 ALARM1 Arm alarm 1, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x18 ALARM2 Arm alarm 2, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

Ox1c ALARM3 Arm alarm 3, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x20 ARMED Indicates the armed/disarmed status of each alarm.
A write to the corresponding ALARMX register arms the alarm.
Alarms automatically disarm upon firing, but writing ones here
will disarm immediately without waiting to fire.

0x24 TIMERAWH Raw read from bits 63:32 of time (no side effects)

0x28 TIMERAWL Raw read from bits 31:0 of time (no side effects)

0x2c DBGPAUSE Set bits high to enable pause when the corresponding debug
ports are active

0x30 PAUSE Set high to pause the timer

0x34 INTR Raw Interrupts

0x38 INTE Interrupt Enable

0x3c INTF Interrupt Force

0x40 INTS Interrupt status after masking & forcing




Alarm

triggering an interrupt at an interval

1 #[ interrupt |

2 unsafe fn TIMER_TIRQ O() { /* alarm fired */ }

1 const TIMERLR: *const u32 = 0x4005_400c;

2 const ALARMO: *mut u32 = Ox4005_4010;

3 // + Ox2000 is bitwise set

4 const INTE_SET: *mut u32 = 0Ox4005_ 4038 + 0x2000;

5

6 // set an alarm after 3 seconds

7 let us = 3_0000_0000;

8

o unsafe {
10 let time = read_volatile(TIMERLR);
11 // use ‘wrapping_add’' as overflowing may panic
12 write_volatile(ALARMO, time.wrapping_add(us));
13 write_volatile(INTE_SET, 1 << 0);
14 3

= the alarm can be set only for the lower 32 bits

= maximum 72 minutes (use RTC for longer alarms)

Offset Name Info

0x08 TIMEHR Read from bits 63:32 of time
always read timelr before timehr

0x0c TIMELR Read from bits 31:0 of time

0x10 ALARMO Arm alarm 0, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARMO == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x14 ALARM1 Arm alarm 1, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM1 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x18 ALARM2 Arm alarm 2, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM2 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

Ox1c ALARM3 Arm alarm 3, and configure the time it will fire.
Once armed, the alarm fires when TIMER_ALARM3 == TIMELR.
The alarm will disarm itself once it fires, and can
be disarmed early using the ARMED status register.

0x20 ARMED Indicates the armed/disarmed status of each alarm.
A write to the corresponding ALARMX register arms the alarm.
Alarms automatically disarm upon firing, but writing ones here
will disarm immediately without waiting to fire.

0x24 TIMERAWH Raw read from bits 63:32 of time (no side effects)

0x28 TIMERAWL Raw read from bits 31:0 of time (no side effects)

0x2c DBGPAUSE Set bits high to enable pause when the corresponding debug
ports are active

0x30 PAUSE Set high to pause the timer

0x34 INTR Raw Interrupts

0x38 INTE Interrupt Enable

0x3c INTF Interrupt Force

0x40 INTS Interrupt status after masking & forcing




Signals

Analog and Digital



*@
Signals =

Analog vs Digital

= analog signals are real signals

= digital signals are a numerical representation of an
analog signal

= hardware usually works with two-level digital
ANALOG SOUND WAVE

signals
Exceptions
= >=100Mbit Ethernet

= WiFi
= SSD storage

ORIGINAL SOUND WAVE

DIGITAL SOUND WAVE




%@
Why use digital? =

in computing

Signal that we want to generate with an output pin ~ Signal that what we actually generate

74 74
V A

OH

Logic 1

IH /

IL

vV n / Logic 0
oL VOL AVA‘V

<




Noise Margin

do not
risk to
change the
logic state

OH

IH

IL

oL

high

not valid

risk to change
the logic state



Prevent Errors

using digital signals

= use higher voltage
= high noise margin
= higher power consumption ...
= Jower noise by using better electronic circuits

= every device samples and regenerates the signal

10s Clock RE2040
Internal
generation
oscillator
_ ~ | PLL -Inlerrupts
rystal
- i PLL
ProcO Proc1
< » SWD
L S0 oM
I
Peripherals
|
i Bus Fabric
PWM ‘ Power on state
UART x2 ‘ machine
> > [(;z‘(?] ——1 | Timer ‘ Sysctrl | [
[ rc | [ ssnlo | LB
12¢x2 | [ Watchdog P P'm‘
ADC&TS PIO
I
-
Memory
< »  QSPI

I

—

Core Supply Regulator




PWM

Pulse Width Modulation



Bibliography

for this section

1. Raspberry Pi Ltd, RP2040 Datasheet

»  Chapter 4 - Peripherals
= Chapter 4.5 - PWM

2. Paul Denisowski, Understanding PWM


https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.youtube.com/watch?v=nXFoVSN3u-E

PWM

simulates an analog signal (using integration)

Voltage
Time on
= generates a square signal ! !
= if integrated (averaged), it looks like an analog
Amplitude
signal
- \ \ > Time
| |
Period
frequency Hz The number of repeats per s

1 1
The percentage of the time when f= . [— = 1HZI
duty cycle % p . g. period | s .
the signalis High .
time_on

duty_cycle = ———%
period

PWM Output

Output

Average Output

Time



PWM @ s | LTI

generic device

f Clock divider Counter | PWM
clock y — Divider
divider x (top+1) correction = 0

fclock . . value —

divider x2 x (top+1) correction = 1 CMP.
, 0 compareq, >= value
]_ CO’I’I’Lpa’r‘ea,b < ’Ua,l’u,e direction | correction top
< q <
compare_a compare_n

PIN OUTPUTA == -en PIN OUTPUT N



Usage examples

= dimmingan LED

LT

= controlling motors

= controlling the angle of a stepper motor

= controlling the RPM of a motor

Pulse Width Modulation

Pulse Train Average

LT T




RP2040’s PWM

generates square signals

Registers

counts the pulse with of input signals

8 PWM units, each with 2 channels (A and B)

each PWM channel is connected to a certain

pin

some channels are connected to two pins

The PWM registers start at a base address of 0x46050000 (defined as PWM_BASE in SDK).

Event select Phase Phase
Advance Retard
Output compare unit Output
1 — (level A) (pin A)
Input
(pin B) . up/down Counter i
Fractional Clock P Output compare unit Output
[EN=1 Divider (8.4) mEN=> 16b, programmable . (level B) (pin B)
wrap _I
Wrap
|—> IRQ Latch —> IRQ
All 30 GPIO pins on RP2040 can be used for PWM:
GPIO 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PWM Channel |0A |0B |1A |1B |2A |2B |3A (3B |4A |4B 5A |5B |[6A |6B |7A |7B
GPIO 16 17 18 19 |20 21 22 23 |24 |25 26 27 28 29
PWM Channel |OA |0B |1A |1B |2A |2B |3A (3B |4A |4B 5A |5B |[6A |6B

Offset Name Info

0x00 CHO_CSR Control and status register

0x04 CHO_DIV INT and FRAC form a fixed-point fractional number.
Counting rate is system clock frequency divided by this number.
Fractional division uses simple 1st-order sigma-delta.

0x08 CHO_CTR Direct access to the PWM counter

0x0c CHo_CC Counter compare values

0x10 CHO_TOP Counter wrap value

Raspberry Pi Pico Moot
. UART (Serial)
Pin Reference
GPI/PIO
TXO' SDAD IO’ PWMOA - GPO 1 PN
RXO SCLO - CSO - PWHOB - GP1 2 sl
it
SOAT SCKO'-“PWMIA™ GP2 4 Control/Debug
SCLT D00 - PHMIB - GP3 5 g
TN SDAD - DID - PWMA - GP4 G g
RXT - SCLO -GS0 PWN2B G5 7 o R /]
SOAT SCKO - WA 696 -9 001 SCL1 - GRZIAT
SCLT D00 - PWM3B - GP7 10 SCKT - SDAT - GPZ6.AD
TXL SDAD DI PR GPB 11
RXT - SCLO - CS1 - PWNAB - GP9 12 SCKD” SOAT
SOAT SCKT - PWSA - GPIO 14 SCL0 - RX1
SCLT D01 - PWMGB - GPIl 15 g 10 SOAD - TXT
TN SDAD - DIT - PWMGA - GPI2 1 000 SELt
RXO - SCLO - CS1 - PWMAB - GP13 17 SCKO - SDAT
SOKT - PHMIA - 614 19 2 GPIT PO SOLO - RXD
DONOTUSE> P15 20 k. 71- GPIG - PNOA - DIO - SDAD - TXO
- VBUSis-+5V e
adafruit VSYSis +5V FROMVBUS or35-5.5VIN




*
RP2040’s PWM Modes

standard mode phase-correct mode
Input (Count) Input (Count)
Count Count
el i i i M counter compare level el M counter compare level
! ! ! M counter M counter
TOP/3 ' / : TOP/3
]
]
|
)
0 2T 3T t 0 T 2T 3T t
Output (Pulse) Output (Pulse)
\ A
10VDD i ! i i i 10VDD ! i H
M GPIO pulse output ! ' !
0 :
T 2T 3T

T 2T 3T

period = (TOP + 1) x (PH_CORRECT +1) x (DIV_INT +

DIV _FRAC
16 sls1

f sYs

period

f=

[HZ]SI



Example pub struct Config {

/// Inverts the PWM output signal on channel A.
pub invert_a: bool,

using Embassy /// Inverts the PWM output signal on channel B.

pub invert b: bool,
1 use embassy_rp::pwm::{Config, Pwm}; /// Enables phase-correct mode for PWM operation.
2 pub phase_correct: bool,
3 let p = embassy_rp::init(Default: :default()); /// Enables the PWM slice, allowing it to generate an out
4 pub enable: bool,
5 let mut c: Config = Default::default(); /// A fractional clock divider, represented as a fixed-po
6 c.top = Ox8000; /// 8 integer bits and 4 fractional bits. It allows preci
7 c.compare_b = 8; /// the PWM output frequency by gating the PWM counter in
8 /// A higher value will result in a slower output frequen
9 let mut pwm = Pwm::new_output_b( pub divider: fixed::FixedUl6<fixed::types::extra::U4>,
10 p.PWM_CH4, /// The output on channel A goes high when ‘compare a’ is
11 p.PIN_25, /// counter. A compare of @ will produce an always low ou
12 c.clone() pub compare_a: ulé,
13 DE /// The output on channel B goes high when ‘compare b' is
14 /// counter.
15 loop { pub compare_b: ulé,
16 info!("LED duty cycle: {}/32768", c.compare_b); /// The point at which the counter wraps, representing th
17 Timer::after_secs(l).await; /// period. The counter will either wrap to @ or reverse
18 c.compare_b += 10; /// setting of ‘phase_correct’.
19 pwm.set_config(&c); pub top: ulé6,

N

)
o
o



ADC

Analog to Digital Converter



Bibliography
for this section

Raspberry Pi Ltd, RP2040 Datasheet

= Chapter 4 - Peripherals
= Chapter 4.9 - ADC and Temperature Sensor

= Subchapter 4.9.1

= Subchapter 4.9.2

= Subchapter 4.9.5


https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

ADC

sampling an analog signal to an array of
values

) the frequency at

sampling i
which a new sample

rate .

is read

the number of bits
resolution bits used to store a
sampled value

0.0

o~ x(£) e x[n]

.."..5: ??..‘l ’(_.5" %, %
o ." ® i1 .g o’r .‘:l ..". * o o &l
@ fe>' ?’ %ot — x(t) e x[n]
— x(t)  — x[n]

0.5 1.0 1.5 2.0 2.5

Time [seconds]

Lower sample rates yield the aliasing effect.



Nyquist—Shannon Sampling Theorem

sampling; >= 2 X mazy

The sampling frequency has to be at least two times
higher than the maximum frequency of the signalto ~ nput
avoid frequency aliasing!l.

Sample
Rate

[ TR T N T B N B B B BN RN AN AR R AR AR AR AR ERITTTTTT T |

Output

1. Aliasing is the overlapping of frequency components. This overlap results in distortion or artifacts when
the signal is reconstructed from samples which causes the reconstructed signal to differ from the
original continuous signal. €



;

Sampling

how the ADC works ADC . output
Start |
. compare_value | q P output
= assumes bit,_; of T (nbis) < times? )<
output
compare_value 1S 1 e > St
. . . CMP
= compares the input signal witha  ,pu 1 Input output
Y >
Channels Select
. E——
generated analog signal from —>) output v
compare_value Output FIFO

" ifinputis lower,bity is @ There are different types of ADCs depending on the architecture. The

» ifinput if higher, bity.1is 1 most common used is SAR (Successive Approximation Register) ADC, also

= repeats for bit,_», bty 5... bity  1tE8T ated in RP2040.


https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/types-of-adcs
https://en.wikipedia.org/wiki/Successive-approximation_ADC

RP2040’s ADC

channels 5
sampling rate 500 kHz
resolution 12 bits

Vinax 3.3V

= requires a 48 MHz clock signal
= channel 4 is connected to the internal

temperature sensor

(Vinput_4 — 0.706)
0.001721

t =27 — [°Clsr

ain <4:0>

conv_ready <€—
conv_start —»|

conv_done €—

Analogue in

ain_sel <2:0>

SAR controller

- result_dout

—» conv_error

e Bt DR
E}
2
d
@ @
g ‘El SAR control
S 8 signal:
3 9 ignals
g g
Sample
and hold

sar_comp_enable

sar_comp_result

Comparator

V/

Raspberry Pi Pico

Pin Reference

TX0 - SDAD -

DIO - PWMOA - 6PO -1 3¢

RXO)- SCLO -~ CSO - PWMOB - GP1 -2 —Zin

™ -

RX1

™ -
RX1 -

™0 -
RX0 -

SDAT -
SCL1 -

SDAO
SCLO

SDAT -

SCL1
SDAO

SCLO -

SDA1

SCLT -
SDAD -
SGLO -

SDA1 -

SCKO - PWMIA -
D00 - PWMIB -
DIO - PWM2A
S0 - PwM2B

SCKO - PWM3A - 6P -9 3
D00 - PWM3B - GP7 -10- 3
DIT - PWM4A - GP8 -11J
CS1 -"PWM4B - 6P3 123

STKT-CPUMSA™ GP10 14— 3

D01 - PWMSB - GPT1 152
DIT - PWMBA - GP12 -16
CS1 - PWM7B - GP13 17 2

SCK1 - PWM7A - G6P14 183
DONOTUSE> GP15 -20-2.

adafruit

Il Power/Ground
UART (Serial)

Analog
GPIO/PIO
PWM
SPl

126
Control/Dehug

DIl — GP2B_A2

- Dot

SCK1

- SCKO

€S0 -
D0
- D00 -
-SCKO -

680 -
<D0 -

- SCLT -
- SOA1

SDA1

SCLO
SDAD -
SCL1
SDA1

SCLO -
SDAD -

6P27_A1
G6P26_A0

RX1
™

RX0
™

VBUSis +3V FROM USB (if peripheral) or TO USB (if host)
VSYSis +5V FROMVBUS or 3.5-5.5VIN



ADC

in Embassy

1 use embassy_rp::adc::{Adc, Channel, Config, InterruptHandler};
2

3 bind_interrupts!(struct Irqgs {

4 ADC_TRQ_FIFO => InterruptHandler;

503

6

7 let p = embassy_rp::init(Default::default());

8 let mut adc = Adc::new(p.ADC, Irgs, Config::default());

9

10 let mut p26 = Channel::new_pin(p.PIN_26, Pull::None);

11

12 loop {

13 let level = adc.read(&mut p26).await.unwrap();
14 info!("Pin 26 ADC: {}", level);
15 let voltage = 3300 * level / 4095;
16 info!("Pin 26 voltage: {}.{}V", voltage / 1000, voltage % 1000);
17 Timer::after_secs(1l).await;
18 3



Conclusion

we talked about

= Counters

= SysTick

= Timers and Alarms
= PWM

= Analog and Digital
= ADC



