
Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.

PWM and ADC
Lecture 4

https://wyliodrin.com/

PWM and ADC
Counters

Timers and Alarms

About Analog and Digital Signals

Pulse Width Modulation (PWM)

Analog to Digital Converters (ADC)

Timers

Bibliography

Raspberry Pi Ltd, RP2040 Datasheet

Chapter 2 - System Description

Chapter 2.15 - Clocks

Subchapter 2.15.1

Subchapter 2.15.2

Chapter 4 - Peripherals

Chapter 4.6 - Timer

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

Clocks

Source Usage

external crystal
(XOSC)

a stable frequency is required, for
instance when using USB

internal ring
(ROSC)

low frequency, in between 1.8 - 12
MHz (varies)

Embassy initializes the Raspberry Pi Pico with the
clock source from the 12 MHz crystal.

all peripherals and the MCU use a clock to execute at certain intervals

1 let p = embassy_rp::init(Default::default());

Frequency divider

1. divides down the clock signals used for the timer, giving reduced over�ow rates

2. allows the timer to be clocked at a user desires the rate

stabilizing the signal and adjusting it

Counter

Registers Description

value
the current value of the
counter

direction set to count UP or DOWN

reset

UP: the value at which the
counter resets to 0
DOWN: the value to which
the counter resets after
getting to 0

increments a register at every clock cycle
 Clock

Counter

value

direction reset_value

Up / Down

CMP

SysTick

decrements the value of SYST_CVR every μs

when SYST_CVR becomes 0 :

triggers the SysTick the exception

next clock cycle sets the value of SYST_CVR to

SYST_RVR

SYST_CALIB is the value of SYST_RVR for a 10ms

interval (might not be available)

ARM Cortex-M time counter

SYST_CSR register

f = ∗
SY ST_RVR

1
1, 000, 000[Hz] SI

SysTick
ARM Cortex-M peripheral

1 const SYST_RVR: *mut u32 = 0xe000_e014 as *mut u32;

2 const SYST_CVR: *mut u32 = 0xe000_e018 as *mut u32;

3 const SYST_CSR: *mut u32 = 0xe000_e010 as *mut u32;

4

5 // fire systick every 5 seconds

6 let interval: u32 = 5_000_000;

7 unsafe {

8 write_volatile(SYST_RVR, interval);

9 write_volatile(SYST_CVR, 0);

10 // set fields `ENABLE` and `TICKINT`

11 write_volatile(SYST_CSR, 0b11);

12 }

SYST_CSR register

Register SysTick handler
1 #[exception]

2 unsafe fn SysTick() {

3 /* systick fired */

4 }

Alarm

Registers Description

value
the current value of the
counter

direction set to count UP or DOWN

reset
UP: max value before 0
DOWN: value after 0

alarm_x

when value ==
alarm_x , triggers an

interrupt, x in 1 … n

counter that triggers interrupts after a time
interval

Counter / Alarm

value

direction reset_value

Up / Down

CMP.

alarm_value 1 alarm_value N
= =

IRQ_ALARM_1 IRQ_ALARM_N

 Clock

RP2040’s Timer
stores a 64 bit number (reset is 2)

starts with 0 at (the peripheral’s) reset

increments the number every μs

in practice fully monotonic (cannot over �ow)

allows 4 alarms that trigger interrupts

TIMER_IRQ_0

TIMER_IRQ_1

TIMER_IRQ_2

TIMER_IRQ_3

alarm_0 … alarm_3 registers are only 32 bits

wide

Counter / Alarm

value

direction reset_value

Up / Down

CMP.

alarm_value 1 alarm_value N
= =

IRQ_ALARM_1 IRQ_ALARM_N

 Clock
64-1

RP2040’s Timer

Reading the time elapsed since restart

The reading order maters as reading TIMELR
latches the value in TIMEHR (stops being updated)
until TIMEHR is read. Works only in single core.

read the number of elapsed μs since reset

1 const TIMERLR: *const u32 = 0x4005_400c;

2 const TIMERHR: *const u32 = 0x4005_4008;

3

4 let time: u64 = unsafe {

5 let low = read_volatile(TIMERLR);

6 let high = read_volatile(TIMERHR);

7 high as u64 << 32 | low

8 }

Alarm

the alarm can be set only for the lower 32 bits

maximum 72 minutes (use RTC for longer alarms)

triggering an interrupt at an interval

1 #[interrupt]

2 unsafe fn TIMER_IRQ_0() { /* alarm fired */ }

1 const TIMERLR: *const u32 = 0x4005_400c;

2 const ALARM0: *mut u32 = 0x4005_4010;

3 // + 0x2000 is bitwise set

4 const INTE_SET: *mut u32 = 0x4005_4038 + 0x2000;

5

6 // set an alarm after 3 seconds

7 let us = 3_0000_0000;

8

9 unsafe {

10 let time = read_volatile(TIMERLR);

11 // use `wrapping_add` as overflowing may panic

12 write_volatile(ALARM0, time.wrapping_add(us));

13 write_volatile(INTE_SET, 1 << 0);

14 };

Signals
Analog and Digital

Signals

analog signals are real signals

digital signals are a numerical representation of an

analog signal

hardware usually works with two-level digital

signals

Exceptions
>= 100Mbit Ethernet

WiFi

SSD storage

Analog vs Digital

Why use digital?

Signal that we want to generate with an output pin

t

V
OH

V
OL

v

Signal that what we actually generate

Logic 0

Logic 1

t

v
V

OH

V
V

IL

V
IH

OL

in computing

Noise Margin

LNM

HNM

t

v
V

OH

V
OL

V
IL

V
IH not valid

low

high

deviations
that do not

risk to
change the
logic state deviations that

risk to change
the logic state if
they underpass
(for high) or
overpass (for
low) the
acceptable
noise margin

Prevent Errors

use higher voltage

high noise margin

higher power consumption …

lower noise by using better electronic circuits

every device samples and regenerates the signal

using digital signals

PWM
Pulse Width Modulation

Bibliography

1. Raspberry Pi Ltd, RP2040 Datasheet

Chapter 4 - Peripherals

Chapter 4.5 - PWM

2. Paul Denisowski, Understanding PWM

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf
https://www.youtube.com/watch?v=nXFoVSN3u-E

PWM

generates a square signal

if integrated (averaged), it looks like an analog

signal

frequency Hz The number of repeats per s

duty_cycle %
The percentage of the time when
the signal is High

simulates an analog signal (using integration)

f = = 1Hz

period

1
[
s

1
]
SI

duty_cycle = %
period

time_on

PWM
generic device

f =

⎩
⎨

⎧

divider×(top+1)
f clock

divider×2×(top+1)
f clock

correction = 0

correction = 1

pin =a,b {
0
1

compare >= valuea,b

compare < valuea,b

Counter / PWM

value

direction | correction top

Up / Down

CMP.

compare_a compare_n
< <

PIN OUTPUT A PIN OUTPUT N

 Clock

 Clock
 Divider

divider

Usage examples
dimming an LED

controlling motors

controlling the angle of a stepper motor

controlling the RPM of a motor

RP2040’s PWM
generates square signals

counts the pulse with of input signals

8 PWM units, each with 2 channels (A and B)

each PWM channel is connected to a certain

pin

some channels are connected to two pins

Registers

RP2040’s PWM Modes
standard mode phase-correct mode

period = (TOP + 1) × (PH_CORRECT + 1) × DIV _INT + [s] (
16

DIV _FRAC
) SI

f = [Hz]

period

f sys
SI

Example
using Embassy

1 use embassy_rp::pwm::{Config, Pwm};

2

3 let p = embassy_rp::init(Default::default());

4

5 let mut c: Config = Default::default();

6 c.top = 0x8000;

7 c.compare_b = 8;

8

9 let mut pwm = Pwm::new_output_b(

10 p.PWM_CH4,

11 p.PIN_25,

12 c.clone()

13);

14

15 loop {

16 info!("LED duty cycle: {}/32768", c.compare_b);

17 Timer::after_secs(1).await;

18 c.compare_b += 10;

19 pwm.set_config(&c);

20 }

pub struct Config {

 /// Inverts the PWM output signal on channel A.

 pub invert_a: bool,

 /// Inverts the PWM output signal on channel B.

 pub invert_b: bool,

 /// Enables phase-correct mode for PWM operation.

 pub phase_correct: bool,

 /// Enables the PWM slice, allowing it to generate an out

 pub enable: bool,

 /// A fractional clock divider, represented as a fixed-po

 /// 8 integer bits and 4 fractional bits. It allows preci

 /// the PWM output frequency by gating the PWM counter in

 /// A higher value will result in a slower output frequen

 pub divider: fixed::FixedU16<fixed::types::extra::U4>,

 /// The output on channel A goes high when `compare_a` is

 /// counter. A compare of 0 will produce an always low ou

 pub compare_a: u16,

 /// The output on channel B goes high when `compare_b` is

 /// counter.

 pub compare_b: u16,

 /// The point at which the counter wraps, representing th

 /// period. The counter will either wrap to 0 or reverse

 /// setting of `phase_correct`.

 pub top: u16,

}

ADC
Analog to Digital Converter

Bibliography

Raspberry Pi Ltd, RP2040 Datasheet

Chapter 4 - Peripherals

Chapter 4.9 - ADC and Temperature Sensor

Subchapter 4.9.1

Subchapter 4.9.2

Subchapter 4.9.5

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

ADC

sampling
rate

Hz
the frequency at
which a new sample
is read

resolution bits
the number of bits
used to store a
sampled value

sampling an analog signal to an array of
values

Lower sample rates yield the aliasing effect.

Nyquist–Shannon Sampling Theorem

The sampling frequency has to be at least two times
higher than the maximum frequency of the signal to
avoid frequency aliasing .

1. Aliasing is the overlapping of frequency components. This overlap results in distortion or artifacts when
the signal is reconstructed from samples which causes the reconstructed signal to differ from the
original continuous signal. ↩

sampling >=f 2 ×max f

[1]

Sampling

assumes bit of

compare_value is 1

compares the input signal with a

generated analog signal from

compare_value

if input is lower, bit is 0

if input if higher, bit is 1

repeats for bit , bit … bit

how the ADC works

n-1

n-1

n-1

n-2 n-3 0

ADC

compare_value
(n bits)

CMP
Input
Select

DAC

n times?

Input
Channels

output

Sample Ready

Start
output

output

output

output

output

Output FIFO

There are different types of ADCs depending on the architecture. The
most common used is SAR (Successive Approximation Register) ADC, also
integrated in RP2040.

https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/types-of-adcs
https://en.wikipedia.org/wiki/Successive-approximation_ADC

RP2040’s ADC

channels 5

sampling rate 500 kHz

resolution 12 bits

V 3.3 V

requires a 48 MHz clock signal

channel 4 is connected to the internal

temperature sensor

max

t = 27 − [°C]

0.001721
(V − 0.706)input_4

SI

ADC
in Embassy

1 use embassy_rp::adc::{Adc, Channel, Config, InterruptHandler};

2

3 bind_interrupts!(struct Irqs {

4 ADC_IRQ_FIFO => InterruptHandler;

5 });

6

7 let p = embassy_rp::init(Default::default());

8 let mut adc = Adc::new(p.ADC, Irqs, Config::default());

9

10 let mut p26 = Channel::new_pin(p.PIN_26, Pull::None);

11

12 loop {

13 let level = adc.read(&mut p26).await.unwrap();

14 info!("Pin 26 ADC: {}", level);

15 let voltage = 3300 * level / 4095;

16 info!("Pin 26 voltage: {}.{}V", voltage / 1000, voltage % 1000);

17 Timer::after_secs(1).await;

18 }

Conclusion

Counters

SysTick

Timers and Alarms

PWM

Analog and Digital

ADC

we talked about

