Asynchronous Development

Lecture 4

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Asynchronous Development

= Concurrency

= Asynchronous Executor

. Future S

= Communication between tasks

Concurrency

Preemptive and Cooperative

Bibliography
for this section

Brad Solomon, Async IO in Python: A Complete Walkthrough

https://realpython.com/async-io-python/

Preemptive
Concurrency

= MCUs are usually single corelll

= Tasks in parallel require an OS[2!

= Tasks can be suspended at any time

= Switching the task is expensive

m» Tasks that do a lot of I/O which makes
the switching time longer than the

actual processing time

1. RP2350 is a dual core MCU, we use
only one core €

2. Running in an ISR is not considered a
normal task €

SysTick

loop

SysTick

(ON]

scheduler alarm

.........................),_‘

Task2

save state for Task 1

restore state for Task 2

scheduler alarm

.........................)_‘

save state for Task 2

restore state for Task 1

(ON]

schedule

Task2

Taskl

wait forl hardware

Taskl

Cooperative
Concurrency

tasks cannot be interrupted!!!

hardware works in an asynchronous

way

tasks cooperate

= give up the MCU for other tasks to
use it while they wait for hardware

there is no need for an OS,

everything is done in one single flow

no penalty for saving and restoring

the state

. except for ISR «

Scheduler Taskl Hardware Task2
loop &
has next task ready?
I
alt
schedule
request
(2] >
in progress
e RIEGCEITE (3]
.await
<
l schedule
process
.await
<
wait event
event
oo e
Scheduler Taskl Hardware Task2

Asynchronous Executor

of Embassy

Bibliography
for this section

Embassy Documentation, Embassy executor

https://embassy.dev/book/#_embassy_executor

Tasks

m #[embassy_executor::main]
= starts the Embassy scheduler
= defines the main task
= #[embassy_executor: :task] -definesanew
task
= pool_size -isoptional and defines how many
identical tasks can be spawned
= the main task
= jnitializes the the led
= spawns the led_blink task (adds to the
scheduler)
= uses .await to give up the MCU while waiting

form the button

embassy_executor: :task(pool _size 2
async fn led_blink(mut led: AnyPin
Loop
led.toogle
Timer::after_secs(l).await

embassy_executor: :main
async fn main(spawner: Spawner

spawner.spawn(led_blink(led)).unwrap
info!("task started

Loop
button.wait_for rising _edge().await
info! ("button pressed

Tasks can stop the executor

= unless awaited, async functions are not executed

= tasks have touse .await inloops, otherwise they

block the scheduler

O 00 N O L1 D N N B

e o e T e e = T = =N
O 00 N O Ul A WN P O

#[embassy_executor: :task|
async fn led_blink(mut led: AnyPin) {
Loop {
led.toogle();

Timer: :after_secs(1);

#[embassy_executor: :main]|
async fn main(spawner: Spawner) {

Loop {

button.wait_for_ rising_edge().await;

info!("button pressed");

How it works

Empty Task Empty Task | ... Wait for
Task Task [Slot][Slot Event

...

I es E
NVIC — ISR VD ey g Execute .
Event?

A /

= sleep when all tasks wait for events

= after an ISR is executed

= if waiting for events, ask every task if it can execute (if the IRQ was what the task was .await ing for)
= if a task is executing, continue the task until it .await s

» jfatasknever .await s,the executor does not run and never executes another task

Priority Tasks

= the tasks runin separate executors
= triggered from interrupts
= will interrupt any task running in the

main executor

I\ Tasks that share data between executors

require synchronization.

RP2

= use SWI_TRQ 01 and SWI_IRQ 01

STM32U545RE

= use any interrupt (UART , SPI,...)

not used anywhere else

Empty Task Empty Task | . Wait for
L2 1EES L Slot J L Slot Event
A A A
Tno E
IRQ Waits for yes
——)[ISR J—) Event? Execute ---
Swi
Waits for yes
—) -=a
Event? Execute } :
\ \
Task Task SRS B AESS oo Exit ISR
Slot Slot

)

Priority Tasks

4

Empty Task | | Empty Task | . .. Wait for
[o J [e J [Stot } [Stet }
A A
IRQ Waits for
Event?
swi
Waits for yes
v v '
Empty Task Empty Task | . .
#[interrupt]

unsafe fn UART4() {
EXECUTOR_HIGH.on_interrupt()

b

#[interrupt]

unsafe fn UART5() {
EXECUTOR_MEDIUM.on_interrupt()

// STM32U545RE

static EXECUTOR_HIGH: InterruptExecutor = InterruptExecutor::new();
static EXECUTOR_MEDIUM: InterruptExecutor = InterruptExecutor: :new();
static EXECUTOR_LOW: StaticCell<Executor> = StaticCell::new();

#[entry]

fn main() -> ! {
// High-priority executor: UART4, priority level 2
interrupt::SWI_TRQ_1.set_priority(Priority::P2);
let spawner = EXECUTOR_HIGH.start(interrupt: :UART4);
spawner. spawn(run_high()).unwrap();

// Medium-priority executor: UART5, priority level 3
interrupt::SWI_TRQ _©.set_priority(Priority::P3);

let spawner = EXECUTOR_MEDIUM.start(interrupt: :UART5);
spawner. spawn(run_med()).unwrap();

// Low priority executor: runs in thread mode, using WFE/SEV
let executor = EXECUTOR_LOW.init(Executor: :new());
executor.run(|spawner| {

unwrap! (spawner.spawn(run_Llow()));

38

¢ priority executors run in ISRs, lower priority tasks are interrupted

The Future type

a.k.a Promise inother languages

Bibliography
for this section

Bert Peters, How does async Rust work

https://bertptrs.nl/2023/04/27/how-does-async-rust-work.html

Future

Hardware

performs the action in parallel

sends an event when job is done (interrupt)

poli()
e >
enum Poll<T> { loop [until|the Future finishes all the requests to the Hardware]
Pending,
Ready(T) execute_next_action()
) i g
X in_progress()
trait Future { e o
type Output;
fn poll(&mut self) -> Poll<Self::Output>;
Poll::Pending
b e (4]
sleeps until an event arrives
fn execute<F>(mut f: F) -> F::Output
where
F: Future event
c e o
loop { poll0
(6] B
match f.poll() {
Poll::Pending => wait_for_event(), read_value(_
Poll::Ready(value) => break value value
e L o
} Poll::Ready(value)
<
}
Executor Future Hardware

Implementing a Future

enum SleepStatus {
SetAlarm,
WaitForAlarm,

struct Sleep {
timeout: usize,
status: SleepStatus,

impl Sleep {
pub fn new(timeout: usize) -> Sleep {
Sleep {
timeout,
status: SleepStatus::SetAlarm,

impl Future for Sleep {
type Output = ();

fn poll(&mut self) -> Poll<Self::Output> {
Loop {
match self.status {
SleepStatus: :SetAlarm => {
ALARM.set_alarm(self.timeout);

self.status = SleepStatus::WaitForAlarm;

b
SleepStatus: :WaitForAlarm => {

if ALARM.expired() {
return Poll::Ready(());
} else {
return Poll::Pending

Executing Sleep

fn poll(&mut self) -> Poll<Self::Output> {
Loop {
match self.status {

SleepStatus: :SetAlarm => {
ALARM.set_alarm(self.timeout);
self.status = SleepStatus::WaitForAlarm;

3

SleepStatus: :WaitForAlarm => {
if ALARM.expired() {

return Poll::Ready(());
} else {
return Poll::Pending;

Executor Sleep ALARM
poll(
o—————
loop [until the ALARM.expired() is true]
set_alarm(self.timeout)
(2] >

Ok(0)

<

triggers an interrupt after timeout

Poll::Pending

sleeps until an interrupt is triggered ‘

raises IRQ_ALARM

<
poll(
exipred()
alt [expired()]
false
< (&)
true
< o
Poll::Ready(())
B @

Executor Sleep ALARM

Async Rust

async fn blink(mut led: Output<'static, PIN_X>) {
led.on();
Timer::after_secs(1l).await;
led.off();

}

Rust rewrites

struct Blink {
// status
status: BlinkStatus,
// local variables
led: Output<'static, PIN_X>,
timer: Option<impl Future>,

}

impl Blink {

pub fn new(led: Output<'static, PIN_X>) -> Blink {

Blink { status: BlinkStatus::Partl, led, timer: None }

}
fn blink(led: Output<'static, PIN_X>) -> Blink {
Blink: :new(led)

impl Future for Blink {
type Output = ();
fn poll(&mut self) -> Poll<Self::Output> {
loop {
match self.status {
BlinkStatus::Partl => {
self.led.on();
self.timerl = Some(Timer::after_secs(1l));
self.status = BlinkStatus::Part2;
3
BlinkStatus: :Part2 => {
if self.timer.unwrap().poll() == Poll::Pending {
return Poll: :Pending;
} else {
self.status = BlinkStatus: :Part3;

3
BlinkStatus::Part3 => {

self.led.off();
return Poll::Ready(());

Async Rust

= the Rust compiler rewrites async functioninto Future

» it does not know how to execute them

= executors are implemented into third party libraries

use engine: :execute;

async fn blink(mut led: Output<'static, PIN_X>) {
led.on();
Timer::after_secs(1l).await;
led.off();

#[entry |

fn main() -> ! {
blink();
blink().await;
execute(blink());

Executor

static TASKS: [Option<impl Future N None, N

fn executor
Loop

for task in TASKS.iter mut
if let Some(task task
if Poll::Ready(_ task.poll
*task None

cortex_m: :asm: :wfi

= this is a simplified version, Option<impl Future> does not work
= the executor is not able to use TASKS like this

= an efficient executor will not poll all the tasks, it uses a waker that tasks use to signal the executor

The Future trait

that Rust provides

trait Future {
type Output;

fn poll(mut self: std::pin::Pin<&mut Self>, cx:

3

= Pin to mut self ,which means that self

cannot be moved

= Context which provides the waker

= tasks are polled only if they ask the executor (by

using the wake function)

= embassy-rs provides the execution engine

&mut Context<' >) -> Poll<Self: :Output>;

Empty Task

Slot Slot

[Empty Task

Execute

Wait for
Event

Communication

between tasks

Bibliography
for this section

Omar Hiari, Sharing Data Among Tasks in Rust Embassy: Synchronization Primitives

https://dev.to/apollolabsbin/sharing-data-among-tasks-in-rust-embassy-synchronization-primitives-59hk

Simultaneous Access

Rust forbids simultaneous writes access

Taskl Resource Task?2
write
O >
write
done writing
4
done writing

Taskl Resource Task?2

Exclusive Access

we want to sequentiality access the resource

Taskl Resource Task?2
write
O >
write
PP PP PP PR PP PEP LR (2]
done writing
S ETETEPEEEPEPETEPEPLPCPETRTEPS ©
write

Taskl Resource Task?2

Synchronization

safely share data between tasks

= NoopMutex -used for data shared between tasks
within the same executor =

m CriticalSectionMutex -used for data shared
between multiple executors, ISRs and cores

= ThreadModeMutex -used for data shared between
tasks within low priority executors (not running in

ISRs mode) running on a single core

Task Task Empty Task Empty Task | Wait for
Slot Slot Event
A A A
Tno ! E
Waits for yes ;
SWI
Waits for yes
—) --a
Y Y
Task Task EmptyTaskc i} Empty Task (S Exit ISR
Slot Slot

ISRs are executed in parallel with tasks

embassy allows registering priority executors, that

run tasks in ISRs

some MCUs have multiple cores

https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.NoopMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.CriticalSectionMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/struct.ThreadModeMutex.html

Blocking Mutex

no

O 00 N O L1 D N N B

10
11
12
13
14
15

.await allowed while the mutex is held

use embassy_sync: :blocking_mutex: :Mutex;

struct Data {/* ... */ }

static SHARED_DATA: Mutex<ThreadModeRawMutex, RefCell<Data>> = Mutex::new(RefCell: :new(Data: :new(/* ...

#[embassy_executor: :task]
async fn taskl() {
// Load value from global context, modify and store
SHARED_DATA.lock(|f| {
let data = f.borrow_mut();
// edit data
f.replace(data);

s

*/33);5

Async Mutex

.await is allowed while the Mutex is held, it will release the Mutex while await ing

1 use embassy_sync::mutex: :Mutex;

2

3 struct Data {/* ... */ }

4

5 static SHARED: Mutex<ThreadModeRawMutex, Data> = Mutex::new(Data::new(/* ... */));
6

7 #[embassy_executor: :task]

8 async fn taskl() {

9 // Load value from global context, modify and store
10 {

11 let mut data = SHARED_DATA.lock().await;

12 // edit *data

13 Timer: :after(Duration::from _millis(1000)).await;
14)

=
ul
o

Channels

send data from a task to another

Embassy provides four types of channels synchronized using Mutex s

Type

»ChanneLA

PriorityChannel

Signal

»PubSubChanneLA

Description

A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only
received by a single consumer.

A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only
received by a single consumer. Higher priority items are shifted to the front of the
channel.

Signalling latest value to a single consumer.

A broadcast channel (publish-subscribe) channel. Each message is received by all
consumers.

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html
https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

:
Channel and Signal

sends data from one task to another

_Channel - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single
consumer.

Signal -Signalling latest value to a single consumer.

Task3

Taskl

Channel Distributor Task4

Task?2

Task5

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html

PriorityChannel

sends data from one task to another with a priority

PriorityChannel -A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received
by a single |consumer. Higher priority items are shifted to the front of the channel.

Task3
Taskl
Priority 2 Distributor Taska
Task2
Priority 1
Task5

https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html

*@
PubSubChannel =

sends data from one task to all receiver tasks

_PubSubChannel -A broadcast channel (publish-subscribe) channel. Each message is received by all
consumers.

Task3

Taskl

Channel Task4

Task?2

Task5

https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

Channel Example

1 enum LedState { On, Off }

2 static CHANNEL: Channel<ThreadModeRawMutex, LedState, 64> = Channel::new();
5

4 #[embassy_executor: :main]

5 async fn main(spawner: Spawner) {

6 // init led

7 spawner. spawn(execute_Lled(CHANNEL.sender(), Duration::from_millis(500))));
8 Loop {

S match CHANNEL.receive().await {

10 LedState::0On => led.on(),

11 LedState: :0ff => led.off()

12)

13 3

14 3

15

16 #[embassy_executor: :task]

17 async fn execute_led(control: Sender<'static, ThreadModeRawMutex, LedState, 64>, delay: Duration) {
18 let mut ticker = Ticker::every(delay);

19 Loop {

20 control .send(LedState: :0n).await;

21 ticker.next().await;

22 control .send(LedState: :0ff).await;

23 ticker.next().await;

Conclusion

we talked about

Preemptive & Cooperative Concurrency

= Asynchronous Executor

Future s and how Rust rewrites async function

Communication between tasks

