
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Asynchronous Development
Lecture 4

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Asynchronous Development

Concurrency

Asynchronous Executor

Future s

Communication between tasks

Concurrency
Preemptive and Cooperative

Bibliography

Brad Solomon, Async IO in Python: A Complete Walkthrough

for this section

https://realpython.com/async-io-python/

Preemptive
Concurrency

MCUs are usually single core

Tasks in parallel require an OS

Tasks can be suspended at any time

Switching the task is expensive

Tasks that do a lot of I/O which makes

the switching time longer than the

actual processing time

1. RP2350 is a dual core MCU, we use

only one core ↩︎

2. Running in an ISR is not considered a

normal task ↩︎
Task1Task2OSSysTick

Task1Task2OSSysTick

save state for Task 1

restore state for Task 2

save state for Task 2

restore state for Task 1

loop

scheduler alarm
1

schedule
2

scheduler alarm
3

schedule
4

wait for hardware
5

[1]

[2]

Cooperative
Concurrency

tasks cannot be interrupted

hardware works in an asynchronous

way

tasks cooperate

give up the MCU for other tasks to

use it while they wait for hardware

there is no need for an OS,

everything is done in one single flow

no penalty for saving and restoring

the state

1. except for ISR ↩︎
Task2HardwareTask1Scheduler

Task2HardwareTask1Scheduler

has next task ready?

wait event

alt

loop

schedule
1

request
2

in progress
3

.await
4

schedule
5

process
6

.await
7

event
8

[1]

Asynchronous Executor
of Embassy

Bibliography

Embassy Documentation, Embassy executor

for this section

https://embassy.dev/book/#_embassy_executor

Tasks

#[embassy_executor::main]

starts the Embassy scheduler

defines the main task

#[embassy_executor::task] - defines a new

task

pool_size -is optional and defines how many

identical tasks can be spawned

the main task

initializes the the led

spawns the led_blink task (adds to the

scheduler)

uses .await to give up the MCU while waiting

form the button

1 #[embassy_executor::task(pool_size = 2)]

2 async fn led_blink(mut led: AnyPin) {

3 loop {

4 led.toogle();

5 Timer::after_secs(1).await;

6 }

7 }

8

9 #[embassy_executor::main]

10 async fn main(spawner: Spawner) {

11 // ...

12

13 // init led

14 spawner.spawn(led_blink(led)).unwrap();

15 info!("task started");

16

17 // init button

18 loop {

19 button.wait_for_rising_edge().await;

20 info!("button pressed");

21 }

22 }

Tasks can stop the executor

unless awaited, async functions are not executed

tasks have to use .await in loops, otherwise they

block the scheduler

1 #[embassy_executor::task]

2 async fn led_blink(mut led: AnyPin) {

3 loop {

4 led.toogle();

5 // this does not execute anything

6 Timer::after_secs(1);

7 // infinite loop without `.await`

8 // that never gives up the MCU

9 }

10 }

11

12 #[embassy_executor::main]

13 async fn main(spawner: Spawner) {

14 // ..

15 loop {

16 button.wait_for_rising_edge().await;

17 info!("button pressed");

18 }

19 }

How it works

Task Empty Task
Slot

Empty Task
Slot

Wait for
Event

Task

ExecuteISRNVIC
yes

no

Waits for
Event?

sleep when all tasks wait for events

after an ISR is executed

if waiting for events, ask every task if it can execute (if the IRQ was what the task was .await ing for)

if a task is executing, continue the task until it .await s

if a task never .await s, the executor does not run and never executes another task

Priority Tasks

the tasks run in separate executors

triggered from interrupts

will interrupt any task running in the

main executor

⚠️ Tasks that share data between executors

require synchronization.

RP2
use SWI_IRQ_01 and SWI_IRQ_01

STM32U545RE
use any interrupt (UART , SPI , …)

not used anywhere else

Task Empty Task
Slot

Empty Task
Slot

Wait for
Event

Task

ExecuteISR
yes

no

Waits for
Event?

Task Empty Task
Slot

Empty Task
Slot

Exit ISRTask

Execute
yesWaits for

Event?

SWI

IRQ

Priority Tasks

Task Empty Task
Slot

Empty Task
Slot

Wait for
Event

Task

ExecuteISR
yes

no

Waits for
Event?

Task Empty Task
Slot

Empty Task
Slot

Exit ISRTask

Execute
yesWaits for

Event?

SWI

IRQ

💡 priority executors run in ISRs, lower priority tasks are interrupted

#[interrupt]

unsafe fn UART4() {

 EXECUTOR_HIGH.on_interrupt()

}

#[interrupt]

unsafe fn UART5() {

 EXECUTOR_MEDIUM.on_interrupt()

}

// STM32U545RE

static EXECUTOR_HIGH: InterruptExecutor = InterruptExecutor::new();

static EXECUTOR_MEDIUM: InterruptExecutor = InterruptExecutor::new();

static EXECUTOR_LOW: StaticCell<Executor> = StaticCell::new();

#[entry]

fn main() -> ! {

 // High-priority executor: UART4, priority level 2

 interrupt::SWI_IRQ_1.set_priority(Priority::P2);

 let spawner = EXECUTOR_HIGH.start(interrupt::UART4);

 spawner.spawn(run_high()).unwrap();

 // Medium-priority executor: UART5, priority level 3

 interrupt::SWI_IRQ_0.set_priority(Priority::P3);

 let spawner = EXECUTOR_MEDIUM.start(interrupt::UART5);

 spawner.spawn(run_med()).unwrap();

 // Low priority executor: runs in thread mode, using WFE/SEV

 let executor = EXECUTOR_LOW.init(Executor::new());

 executor.run(|spawner| {

 unwrap!(spawner.spawn(run_low()));

 });

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

The Future type
a.k.a Promise in other languages

Bibliography

Bert Peters, How does async Rust work

for this section

https://bertptrs.nl/2023/04/27/how-does-async-rust-work.html

Future

HardwareFutureExecutor

HardwareFutureExecutor

performs the action in parallel

sleeps until an event arrives

sends an event when job is done (interrupt)

loop [until the Future finishes all the requests to the Hardware]

poll()
1

execute_next_action()
2

in_progress()
3

Poll::Pending
4

event
5

poll()
6

read_value()
7

value
8

Poll::Ready(value)
9

enum Poll<T> {

 Pending,

 Ready(T),

}

trait Future {

 type Output;

 fn poll(&mut self) -> Poll<Self::Output>;

}

fn execute<F>(mut f: F) -> F::Output

where

 F: Future

{

 loop {

 match f.poll() {

 Poll::Pending => wait_for_event(),

 Poll::Ready(value) => break value

 }

 }

}

Implementing a Future

enum SleepStatus {

 SetAlarm,

 WaitForAlarm,

}

struct Sleep {

 timeout: usize,

 status: SleepStatus,

}

impl Sleep {

 pub fn new(timeout: usize) -> Sleep {

 Sleep {

 timeout,

 status: SleepStatus::SetAlarm,

 }

 }

}

impl Future for Sleep {

 type Output = ();

 fn poll(&mut self) -> Poll<Self::Output> {

 loop {

 match self.status {

 SleepStatus::SetAlarm => {

 ALARM.set_alarm(self.timeout);

 self.status = SleepStatus::WaitForAlarm;

 }

 SleepStatus::WaitForAlarm => {

 if ALARM.expired() {

 return Poll::Ready(());

 } else {

 return Poll::Pending

 }

 }

 }

 }

 }

}

Executing Sleep

ALARMSleepExecutor

ALARMSleepExecutor

triggers an interrupt after timeout

sleeps until an interrupt is triggered

alt [expired()]

loop [until the ALARM.expired() is true]

poll()
1

set_alarm(self.timeout)
2

Ok(())
3

Poll::Pending
4

raises IRQ_ALARM
5

poll()
6

exipred()
7

false
8

true
9

Poll::Ready(())
10

fn poll(&mut self) -> Poll<Self::Output> {

 loop {

 match self.status {

 SleepStatus::SetAlarm => {

 ALARM.set_alarm(self.timeout);

 self.status = SleepStatus::WaitForAlarm;

 }

 SleepStatus::WaitForAlarm => {

 if ALARM.expired() {

 return Poll::Ready(());

 } else {

 return Poll::Pending;

 }

 }

 }

 }

}

Async Rust

Rust rewrites

async fn blink(mut led: Output<'static, PIN_X>) {

 led.on();

 Timer::after_secs(1).await;

 led.off();

}

struct Blink {

 // status

 status: BlinkStatus,

 // local variables

 led: Output<'static, PIN_X>,

 timer: Option<impl Future>,

}

impl Blink {

 pub fn new(led: Output<'static, PIN_X>) -> Blink {

 Blink { status: BlinkStatus::Part1, led, timer: None }

 }

}

fn blink(led: Output<'static, PIN_X>) -> Blink {

 Blink::new(led)

}

impl Future for Blink {

 type Output = ();

 fn poll(&mut self) -> Poll<Self::Output> {

 loop {

 match self.status {

 BlinkStatus::Part1 => {

 self.led.on();

 self.timer1 = Some(Timer::after_secs(1));

 self.status = BlinkStatus::Part2;

 }

 BlinkStatus::Part2 => {

 if self.timer.unwrap().poll() == Poll::Pending {

 return Poll::Pending;

 } else {

 self.status = BlinkStatus::Part3;

 }

 }

 BlinkStatus::Part3 => {

 self.led.off();

 return Poll::Ready(());

 }

 }

 }

 }

}

Async Rust

the Rust compiler rewrites async function into Future

it does not know how to execute them

executors are implemented into third party libraries

1 use engine::execute;

2

3 // Rust rewrites the function to a Future

4 async fn blink(mut led: Output<'static, PIN_X>) {

5 led.on();

6 Timer::after_secs(1).await;

7 led.off();

8 }

9

10 #[entry]

11 fn main() -> ! {

12 blink(); // this returns the Blink future, but does not execute it

13 blink().await; // does not work, as `main` is not an `async` function

14 execute(blink()); // this works, as `execute` executes the Blink future

15 }

Executor

this is a simplified version, Option<impl Future> does not work

the executor is not able to use TASKS like this

an efficient executor will not poll all the tasks, it uses a waker that tasks use to signal the executor

1 static TASKS: [Option<impl Future>; N] = [None, N];

2

3 fn executor() {

4 loop {

5 // ask all tasks to continue if they have available data

6 for task in TASKS.iter_mut() {

7 if let Some(task) = task {

8 if Poll::Ready(_) = task.poll() {

9 *task = None

10 }

11 }

12 }

13

14 // wait for interrupts

15 cortex_m::asm::wfi();

16 }

17 }

The Future trait

Pin to mut self , which means that self

cannot be moved

Context which provides the waker

tasks are polled only if they ask the executor (by

using the wake function)

embassy-rs provides the execution engine

Task Empty Task
Slot

Empty Task
Slot

Wait for
Event

Task
W W

ExecuteISR

that Rust provides

1 trait Future {

2 type Output;

3

4 fn poll(mut self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

5 }

Communication
between tasks

Bibliography

Omar Hiari, Sharing Data Among Tasks in Rust Embassy: Synchronization Primitives

for this section

https://dev.to/apollolabsbin/sharing-data-among-tasks-in-rust-embassy-synchronization-primitives-59hk

Simultaneous Access

Task2ResourceTask1

Task2ResourceTask1

write
1

write
2

done writing
3

done writing
4

Rust forbids simultaneous writes access

Exclusive Access

Task2ResourceTask1

Task2ResourceTask1

write
1

write
2

done writing
3

write
4

done writing
5

we want to sequentiality access the resource

Synchronization

NoopMutex - used for data shared between tasks

within the same executor

CriticalSectionMutex - used for data shared

between multiple executors, ISRs and cores

ThreadModeMutex - used for data shared between

tasks within low priority executors (not running in

ISRs mode) running on a single core

Task Empty Task
Slot

Empty Task
Slot

Wait for
Event

Task

ExecuteISR
yes

no

Waits for
Event?

Task Empty Task
Slot

Empty Task
Slot

Exit ISRTask

Execute
yesWaits for

Event?

SWI

IRQ

ISRs are executed in parallel with tasks

embassy allows registering priority executors, that

run tasks in ISRs

some MCUs have multiple cores

safely share data between tasks

https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.NoopMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/type.CriticalSectionMutex.html
https://docs.embassy.dev/embassy-sync/git/default/blocking_mutex/struct.ThreadModeMutex.html

Blocking Mutex
no .await allowed while the mutex is held

1 use embassy_sync::blocking_mutex::Mutex;

2

3 struct Data {/* ... */ }

4

5 static SHARED_DATA: Mutex<ThreadModeRawMutex, RefCell<Data>> = Mutex::new(RefCell::new(Data::new(/* ... */)));

6

7 #[embassy_executor::task]

8 async fn task1() {

9 // Load value from global context, modify and store

10 SHARED_DATA.lock(|f| {

11 let data = f.borrow_mut();

12 // edit data

13 f.replace(data);

14 });

15 }

Async Mutex
.await is allowed while the Mutex is held, it will release the Mutex while await ing

1 use embassy_sync::mutex::Mutex;

2

3 struct Data {/* ... */ }

4

5 static SHARED: Mutex<ThreadModeRawMutex, Data> = Mutex::new(Data::new(/* ... */));

6

7 #[embassy_executor::task]

8 async fn task1() {

9 // Load value from global context, modify and store

10 {

11 let mut data = SHARED_DATA.lock().await;

12 // edit *data

13 Timer::after(Duration::from_millis(1000)).await;

14 }

15 }

Channels

Embassy provides four types of channels synchronized using Mutex s

Type Description

Channel
A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only

received by a single consumer.

PriorityChannel

A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only

received by a single consumer. Higher priority items are shifted to the front of the

channel.

Signal Signalling latest value to a single consumer.

PubSubChannel
A broadcast channel (publish-subscribe) channel. Each message is received by all

consumers.

send data from a task to another

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html
https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

Channel and Signal

Channel - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single

consumer.

Signal - Signalling latest value to a single consumer.

Task1

Channel

Task2

Distributor

Task3

Task4

Task5

sends data from one task to another

https://docs.embassy.dev/embassy-sync/git/default/channel/struct.Channel.html
https://docs.embassy.dev/embassy-sync/git/default/signal/struct.Signal.html

PriorityChannel

PriorityChannel - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received

by a single |consumer. Higher priority items are shifted to the front of the channel.

Task1

Priority 1

Priority 2

Task2

Distributor

Task3

Task4

Task5

sends data from one task to another with a priority

https://docs.embassy.dev/embassy-sync/git/default/priority_channel/struct.PriorityChannel.html

PubSubChannel

PubSubChannel - A broadcast channel (publish-subscribe) channel. Each message is received by all

consumers.

Task1

Channel

Task2

Task3

Task4

Task5

sends data from one task to all receiver tasks

https://docs.embassy.dev/embassy-sync/git/default/pubsub/struct.PubSubChannel.html

Channel Example

1 enum LedState { On, Off }

2 static CHANNEL: Channel<ThreadModeRawMutex, LedState, 64> = Channel::new();

3

4 #[embassy_executor::main]

5 async fn main(spawner: Spawner) {

6 // init led

7 spawner.spawn(execute_led(CHANNEL.sender(), Duration::from_millis(500))));

8 loop {

9 match CHANNEL.receive().await {

10 LedState::On => led.on(),

11 LedState::Off => led.off()

12 }

13 }

14 }

15

16 #[embassy_executor::task]

17 async fn execute_led(control: Sender<'static, ThreadModeRawMutex, LedState, 64>, delay: Duration) {

18 let mut ticker = Ticker::every(delay);

19 loop {

20 control.send(LedState::On).await;

21 ticker.next().await;

22 control.send(LedState::Off).await;

23 ticker.next().await;

Conclusion

Preemptive & Cooperative Concurrency

Asynchronous Executor

Future s and how Rust rewrites async function

Communication between tasks

we talked about

