
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Interrupts, PWM and ADC
Lecture 3

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Interrupts, PWM and ADC

Interrupts

Counters

Timers and Alarms

About Analog and Digital Signals

Pulse Width Modulation (PWM)

Analog to Digital Converters (ADC)

Exceptions
for the ARM Cortex-M33 processor

Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

Chapter 4 - Architecture

Section 4.5 - Exceptions and Interrupts

Subsection 4.4.1 - What are exceptions

Chapter 8 - Exceptions and Interrupts

Section 8.1 - What are Exceptions and Interrupts

Section 8.2 - Exception types+

for this section

Processor Exceptions

Registers

r0

r1

r2

Processor

Memory Read/Write

Processing

add

sub

and

mov load store

Exceptions

reset ()

supervisor ()

div0 ()

Memory

function reset () { ... }

function supervisor () { ... }

function div0 () { ... }

what happens if something does not work as required

Standard ARM Cortex-M Exceptions

ARM Cortex M0+

Memory Read/Write

Processing

add

sub

and

push / pop ldr / str

Exceptions

Reset ()

NMI ()

HardFault ()

SVCall ()

PendSV ()

SysTick ()

Memory
Registers

r0

r1

r14 (lr)

r15 (pc)

r13 (sp)

function reset () { ... }

function nmi () { ... }

function hard_fault () { ... }

function svc () { ... }

function pend_sv () { ... }

function sys_tick () { ... }

Initial Stack Pointer
Stack

what happens if something does not work as required

ARM Cortex-M Interrupts

ARM Cortex M0+

Memory Read/Write

Processing

add

sub

and

push / pop ldr / str

Exceptions

Reset ()

NMI ()

HardFault ()

SVCall ()

PendSV ()

SysTick ()

Memory
Registers

r0

r1

r14 (lr)

r15 (pc)

r13 (sp)

function reset () { ... }

function nmi () { ... }

function hard_fault () { ... }

function svc () { ... }

function pend_sv () { ... }

function sys_tick () { ... }

Initial Stack Pointer
Stack

Nested Vectored
Interrupt Controller (NVIC)

Hardware Hardware Hardware Hardware Hardware

function isr0 () { ... }

function isr1 () { ... }

function isr31 () { ... }

ISR Dispatcher

some hardware device notifies the MCU

Exceptions and Interrupts in Embassy

Embassy registers handlers for Exceptions

Each of the Embassy drivers that you use provides interrupt handlers for the peripheral they control

Developers have to bind interrupts to the driver.

List of some of the RP2350’s interrupts

Register the Interrupt Bind it to the driver

bind_interrupts!(struct Irqs {

 ADC_IRQ_FIFO => InterruptHandler;

});

let mut adc = Adc::new(p.ADC, Irqs, Config::default());

Timers

Bibliography

1. Joseph Yiu, The Definitive Guide to ARM® Cortex®-M23 and Cortex-M33 Processors

Chapter 11 - OS support features

Section 11.2 - SysTick timer

2. Raspberry Pi Ltd, RP2350 Datasheet

Chapter 8 - Clocks

Chapter 8.1 - Overview

Subchapter 8.1.1

Subchapter 8.1.2

Chapter 12 - Peripherals

Chapter 12.8 - System Timers

for this section

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

Clocks for RP235x

all peripherals and the MCU use a clock to execute at

certain intervals

Source Usage

external crystal

(XOSC)

a stable frequency is required, for

instance when using USB

internal ring

(ROSC)

low frequency, in between 1.8 - 12

MHz (varies)

Embassy initializes the Raspberry Pi Pico with the

clock source from the 12 MHz crystal.

1 let p = embassy_rp::init(Default::default());

Clocks for STM32U545RE

Source Usage

LSE, LSE32

and HSE

oscillators based on crystals external

crystals

LSI, HSI,

HSI48, MSIS

and MSIK

Internal RC oscillators which can be

used as main clock source or as a

clock source for peripherals

Embassy initializes the STM32U545RE with the clock

source from Multi-Speed Internal oscillator (MSIS).

all peripherals and the MCU use a clock to execute at

certain intervals

1 let p = embassy_stm32::init(Default::default());

Frequency divider

1. divides down the clock signals used for the timer, giving reduced overflow rates

2. allows the timer to be clocked at a user desired rate

stabilizing the signal and adjusting it

Counter

Registers Description

value
the current value of the

counter

direction set to count UP or DOWN

reset

UP: the value at which the

counter resets to 0

DOWN: the value to which

the counter resets after

getting to 0

 Clock

Counter

value

direction reset_value

Up / Down

CMP

increments a register at every clock cycle

SysTick

decrements the value of SYST_CVR every μs

when SYST_CVR becomes 0 :

triggers the SysTick exception

next clock cycle sets the value of SYST_CVR to

SYST_RVR

SYST_CALIB is the value of SYST_RVR for a 10ms

interval (might not be available)

SYST_CSR register

ARM Cortex-M time counter

f = ​ ∗
SY ST_RVR

1
1, 000, 000[Hz] ​SI

SysTick SYST_CSR register

Register SysTick handler

ARM Cortex-M peripheral

1 const SYST_RVR: *mut u32 = 0xe000_e014 as *mut u32;

2 const SYST_CVR: *mut u32 = 0xe000_e018 as *mut u32;

3 const SYST_CSR: *mut u32 = 0xe000_e010 as *mut u32;

4

5 // fire systick every 5 seconds

6 let interval: u32 = 5_000_000;

7 unsafe {

8 write_volatile(SYST_RVR, interval);

9 write_volatile(SYST_CVR, 0);

10 // set fields `ENABLE` and `TICKINT`

11 write_volatile(SYST_CSR, 0b11);

12 }

1 #[exception]

2 unsafe fn SysTick() {

3 /* systick fired */

4 }

Alarm

Registers Description

value
the current value of the

counter

direction set to count UP or DOWN

reset
UP: max value before 0

DOWN: value after 0

alarm_x

when value ==

alarm_x , triggers an

interrupt, x in 1 … n

Counter / Alarm

value

direction reset_value

Up / Down

CMP.

alarm_value 1 alarm_value N
= =

IRQ_ALARM_1 IRQ_ALARM_N

 Clock

counter that triggers interrupts after a time

interval

RP2350’s Timers

store a 64 bit number (reset is 2)

start with 0 at (the peripheral’s) reset

increment the number every μs

in practice fully monotonic (cannot over flow)

allow 4 alarms that trigger interrupts

TIMER0_IRQ_0 and TIMER1_IRQ_0

TIMER0_IRQ_1 and TIMER1_IRQ_1

TIMER0_IRQ_2 and TIMER1_IRQ_2

TIMER0_IRQ_3 and TIMER1_IRQ_3

alarm_0 … alarm_3 registers are only 32 bits

wide

Counter / Alarm

value

direction reset_value

Up / Down

CMP.

alarm_value 1 alarm_value N
= =

IRQ_ALARM_1 IRQ_ALARM_N

 Clock

two timers, TIMER0 and TIMER1

64-1

RP2350’s Timer instance

Reading the time elapsed since restart

The reading order maters as reading TIMELR latches

the value in TIMEHR (stops being updated) until

TIMEHR is read. Works only in single core.

read the number of elapsed μs since reset

1 const TIMERLR: *const u32 = 0x400b_000c;

2 const TIMERHR: *const u32 = 0x400b_0008;

3

4 let time: u64 = unsafe {

5 let low = read_volatile(TIMERLR);

6 let high = read_volatile(TIMERHR);

7 high as u64 << 32 | low

8 }

Alarm

the alarm can be set only for the lower 32 bits

maximum 72 minutes (use RTC for longer alarms)

triggering an interrupt at an interval

1 #[interrupt]

2 unsafe fn TIMER0_IRQ_0() { /* alarm fired */ }

1 const TIMERLR: *const u32 = 0x400b_000c;

2 const ALARM0: *mut u32 = 0x400b_0010;

3 // + 0x2000 is bitwise set

4 const INTE_SET: *mut u32 = 0x400b_0040;

5

6 // set an alarm after 3 seconds

7 let us = 3_0000_0000;

8

9 unsafe {

10 let time = read_volatile(TIMERLR);

11 // use `wrapping_add` as overflowing may panic

12 write_volatile(ALARM0, time.wrapping_add(us));

13 write_volatile(INTE_SET, 1 << 0);

14 };

STM32U5’s Timers

Basic Timers

two basic 16-bit timers

Timers

PWM generation

four 32-bit timers

three 16-bit timers

two advanced control 16-bit timers

Low Power Timers

four low power 16-bit timers

11 timers and 4 low power timers

Signals
Digital Signals - Recap

Signals

analog signals are real signals

digital signals are a numerical representation of an

analog signal (software level)

hardware usually works with two-level digital

signals (hardware level)

Exceptions

in wireless and in high-speed cable communication

things get more complicated

for PCB level / between integrated circuits on the same board /

inside the same chip - things are a "a little simpler" - as detailed in

the following

Analog vs Digital

Why use digital in computing?

Signal that we want to generate with an output pin

t

V
OH

V
OL

v

Signal that what we actually generate

Logic 0

Logic 1

t

v
V
OH

V
V

IL

V
IH

OL

Why we still use it? Because after passing through an IC or a gate inside an IC - the signal is "rebuilt" and if the "digital discipline" described

in the following is respected - we can preserve the information after numerous "passes". Thus, each element can behave with a large margin

for error, yet the final result is correct.

Noise Margin

LNM

HNM

t

v
V

OH

V
OL

V
IL

V
IH not valid

low

high

deviations
that do not

risk to
change the
logic state deviations that

risk to change
the logic state if
they underpass
(for high) or
overpass (for
low) the
acceptable
noise margin

PWM
Pulse Width Modulation

Bibliography

1. Raspberry Pi Ltd, RP2350 Datasheet

Chapter 12 - Peripherals

Section 12.5 - PWM

2. Paul Denisowski, Understanding PWM

for this section

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf
https://www.youtube.com/watch?v=nXFoVSN3u-E

PWM

generates a square signal

if integrated (averaged), it looks like an analog signal

frequency Hz The number of repeats per s

duty_cycle %
The percentage of the time when the

signal is High

simulates an analog signal (using integration)

f = ​ ​ = 1Hz ​

period

1
[
s

1
]
SI

duty_cycle = ​%
period

time_on

PWM

Counter / PWM

value

direction | correction top

Up / Down

CMP.

compare_a compare_n
< <

PIN OUTPUT A PIN OUTPUT N

 Clock

 Clock
 Divider

divider

generic device

f = ​ ​ ​ ​

⎩
⎨

⎧ ​

divider×(top+1)
f ​clock

​

divider×2×(top+1)
f ​clock

correction = 0

correction = 1

pin ​ =a,b ​ ​ ​{
0

1

compare ​ >= valuea,b

compare ​ < valuea,b

Usage examples

dimming an LED controlling motors

controlling the angle of a stepper motor

controlling the RPM of a motor

RP2350’s PWM

generates square signals

counts the pulse width of input signals

8 or 12 PWM slices, each A and B channels

each PWM channel is linked to a fixed pin

some channels are connected to two pins

may be used as timers (IRQ1_INTE)

Registers

1. Depends on the RP2350 package ↩︎

[1]

RP2350’s PWM Modes
standard mode phase-correct mode

period = (TOP + 1) × (PH_CORRECT + 1) × DIV _INT + ​ [s] ​(
16

DIV _FRAC
) SI

f = ​[Hz] ​

period

f ​sys
SI

Example pub struct Config {

 /// Inverts the PWM output signal on channel A.

 pub invert_a: bool,

 /// Inverts the PWM output signal on channel B.

 pub invert_b: bool,

 /// Enables phase-correct mode for PWM operation.

 pub phase_correct: bool,

 /// Enables the PWM slice, allowing it to generate an out

 pub enable: bool,

 /// A fractional clock divider, represented as a fixed-po

 /// 8 integer bits and 4 fractional bits. It allows preci

 /// the PWM output frequency by gating the PWM counter in

 /// A higher value will result in a slower output frequen

 pub divider: fixed::FixedU16<fixed::types::extra::U4>,

 /// The output on channel A goes high when `compare_a` is

 /// counter. A compare of 0 will produce an always low ou

 pub compare_a: u16,

 /// The output on channel B goes high when `compare_b` is

 /// counter.

 pub compare_b: u16,

 /// The point at which the counter wraps, representing th

 /// period. The counter will either wrap to 0 or reverse

 /// setting of `phase_correct`.

 pub top: u16,

}

using Embassy

1 use embassy_rp::pwm::{Config, Pwm};

2

3 let p = embassy_rp::init(Default::default());

4

5 let mut c: Config = Default::default();

6 c.top = 0x8000;

7 c.compare_b = 8;

8

9 let mut pwm = Pwm::new_output_b(

10 p.PWM_SLICE4,

11 p.PIN_25,

12 c.clone()

13);

14

15 loop {

16 info!("LED duty cycle: {}/32768", c.compare_b);

17 Timer::after_secs(1).await;

18 c.compare_b += 10;

19 pwm.set_config(&c);

20 }

STM32U545RE’s PWM

generates square signals

counts the pulse width of input signals

each timer (TIM) has up to four channels

each PWM channel is connected to one or more pins

frequency is determined by the value of the

TIMx_ARR register, and the duty cycle by the value

of the TIMx_CCRy register.

Pin Alternate functions

`

Example #[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]

pub enum CountingMode {

 #[default]

 /// The timer counts up to the reload value and then

 /// resets back to 0.

 EdgeAlignedUp,

 /// The timer counts down to 0 and then resets back to

 /// the reload value.

 EdgeAlignedDown,

 /// The timer counts up to the reload value and then

 /// counts back to 0.

 /// The output compare interrupt flags of channels

 /// configured in output are set when the counter is

 /// counting down.

 CenterAlignedDownInterrupts,

 /// The timer counts up to the reload value and then

 /// counts back to 0.

 /// The output compare interrupt flags of channels

 /// configured in output are set when the counter is

 /// counting up.

 CenterAlignedUpInterrupts,

 /// The timer counts up to the reload value and then

 /// counts back to 0.

 /// The output compare interrupt flags of channels

 /// configured in output are set when the counter is

 /// counting both up or down.

using Embassy

1 use embassy_stm32::timer::simple_pwm::PwmPin;

2 use embassy_stm32::timer::simple_pwm::SimplePwm;

3 use embassy_stm32::timer::low_level::CountingMode;

4

5 let p = embassy_stm32::init(Default::default());

6

7 let pin = PwmPin::new(p.PB0, OutputType::PushPull);

8 let mut pwm = SimplePwm::new(

9 p.TIM3, // Timer instance

10 None, None, Some(pin), None, // Pin channel map

11 khz(10), // Frequency

12 CountingMode::default() // Counter config

13);

14 let mut ch3 = pwm.ch3();

15

16 loop {

17 ch3.set_duty_cycle_fully_off();

18 Timer::after_millis(300).await;

19 ch3.set_duty_cycle_fraction(1, 2);

20 Timer::after_millis(300).await;

21 ch3.set_duty_cycle(ch3.max_duty_cycle() - 1);

ADC
Analog to Digital Converter

Bibliography

Raspberry Pi Ltd, RP2040 Datasheet

Chapter 12 - Peripherals

Section 12.4 - ADC and Temperature Sensor

Subchapter 12.4.2

Subchapter 12.4.3

Subchapter 12.4.6

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

ADC

sampling

rate
Hz

the frequency at

which a new sample

is read

resolution bits

the number of bits

used to store a

sampled value

Lower sample rates yield the aliasing effect.

sampling an analog signal to an array of

values

Nyquist–Shannon Sampling Theorem

The sampling frequency has to be at least two times

higher than the maximum frequency of the signal to

avoid frequency aliasing .

1. Aliasing is the overlapping of frequency components. This overlap results in distortion or artifacts when the

signal is reconstructed from samples which causes the reconstructed signal to differ from the original

continuous signal. ↩︎

sampling ​ >f 2 × max ​f

[1]

Sampling

assumes bit of

compare_value is 1

compares the input signal with a

generated analog signal from

compare_value

if input is lower, bit is 0

if input if higher, bit is 1

repeats for bit , bit … bit

ADC

compare_value
(n bits)

CMP
Input
Select

DAC

n times?

Input
Channels

output

Sample Ready

Start
output

output

output

output

output

Output FIFO

There are different types of ADCs depending on the architecture. The

most common used is SAR (Successive Approximation Register) ADC, also

integrated in RP2350.

how the ADC works

n-1

n-1

n-1

n-2 n-3 0

https://www.monolithicpower.com/en/analog-to-digital-converters/introduction-to-adcs/types-of-adcs
https://en.wikipedia.org/wiki/Successive-approximation_ADC

RP2350’s ADC

channels 4 or 8

sampling rate 500 kHz

resolution 12 bits

V 3.3 V

requires a 48 MHz clock signal

channel 4 or 8 is connected to the internal

temperature sensor

[1]

max

[1:1]

t = 27 − ​[°C] ​

0.001721

(V ​ − 0.706)input_4
SI

ADC
in Embassy

1 use embassy_rp::adc::{Adc, Channel, Config, InterruptHandler};

2

3 bind_interrupts!(struct Irqs {

4 ADC_IRQ_FIFO => InterruptHandler;

5 });

6

7 let p = embassy_rp::init(Default::default());

8 let mut adc = Adc::new(p.ADC, Irqs, Config::default());

9

10 let mut p26 = Channel::new_pin(p.PIN_26, Pull::None);

11

12 loop {

13 let level = adc.read(&mut p26).await.unwrap();

14 info!("Pin 26 ADC: {}", level);

15 let voltage = 3300 * level / 4095;

16 info!("Pin 26 voltage: {}.{}V", voltage / 1000, voltage % 1000);

17 Timer::after_secs(1).await;

18 }

STM32U545RE’s ADC

ADC12 ADC4

channels 20 23

sampling rate 2.5 Msps 2.5 Msps

resolution 14 bits 12 bits

V 3.3 V 3.3 V

internal channels connected to

temperature sensors (V)

V monitoring channel

internal reference voltage (V)

V and DAC 1 and 2 output channels

ADC1 conectivity

ADC12 and ADC4

max

SENSE

BAT

REFERENCE

CORE

ADC - blocking
in Embassy

1 use embassy_stm32::adc;

2

3 let mut p = embassy_stm32::init(Default::default());

4

5 let mut adc1 = adc::Adc::new(p.ADC1);

6

7 adc1.set_resolution(adc::Resolution::BITS14);

8 adc1.set_averaging(adc::Averaging::Samples1024);

9 adc1.set_sample_time(adc::SampleTime::CYCLES160_5);

10

11 let measurement = adc1.blocking_read(&p.PA3);

12

13 let max = adc::resolution_to_max_count(adc::Resolution::BITS14);

14 let voltage: f32 = 3.3 * measurement as f32 / max as f32;

ADC - asynchronous
in Embassy

1 use embassy_stm32::adc;

2

3 let mut p = embassy_stm32::init(Default::default());

4

5 let mut adc1 = adc::Adc::new(p.ADC1);

6 let mut adc1_pin = p.PA3;

7

8 adc1.set_resolution(adc::Resolution::BITS14);

9 adc1.set_averaging(adc::Averaging::Samples1024);

10 adc1.set_sample_time(adc::SampleTime::CYCLES160_5);

11

12 let mut degraded_channel = adc1_pin.degrade_adc();

13

14 let mut measurements = [0u16; 1];

15 adc1.read(

16 p.GPDMA1_CH0.reborrow(),

17 [(&mut degraded_channel, adc::SampleTime::CYCLES160_5)].into_iter(),

18 &mut measurements,

19).await;

20

21 let max = adc::resolution_to_max_count(adc::Resolution::BITS14);

22 let voltage: f32 = 3.3 * measurements[0] as f32 / max as f32;

Conclusion

Exceptions and Interrupts

Counters

SysTick

Timers and Alarms

PWM

Analog and Digital

ADC

we talked about

