
Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

Introduction
Lecture 1

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Welcome

You will learn
how hardware works

how to actually build your own hardware device

the Rust programming Language

We expect
to come to class

ask a lot of questions

to the Microprocessor Architecture engineering class

Team

Our team

Lectures
Alexandru Radovici

Labs
Alexandru Radovici

Teodor Dicu (Hardware)

Genan Omer (Software)

Outline

Lectures
12 lectures

1 Q&A lecture for the project

Labs
7 labs

Project
Build a hardware device running software written

in Rust

Presented at PM Fair during the last week of the

semester

Grading

Part Description Points

Lecture

tests
You will have a test at every class with subjects from the previous class. 1p

Final

Lecture test
You will have a test during one of the lectures in January. 4p

Lab Your work at every lab will be graded. 1p

Project
You will have to design and implement a hardware device. Grading will be done for

the documentation, hardware design and software development.
3p

Final Test You will have to take an exam during the last week of the semester. 2p

Total You will need at least 4.5 points to pass the subject. 11p

https://embedded-rust-101.wyliodrin.com/docs/fils_en/category/lecture
https://embedded-rust-101.wyliodrin.com/docs/fils_en/category/lecture
https://embedded-rust-101.wyliodrin.com/docs/fils_en/category/lecture
https://embedded-rust-101.wyliodrin.com/docs/fils_en/category/lab
https://embedded-rust-101.wyliodrin.com/docs/fils_en/project

Subjects

Theory

How a microprocessor works

How the ARM Cortex-M processor works

Using digital signals to control devices

Using analog signals to read data from sensors

How interrupts work

How asynchronous programming works (async/await)

How embedded operating systems work

Practical

How to use the STM32 Nucleo-U545RE-Q

Affordable

Powerful processor

Good documentation

How to program in Rust

Memory Safe

Java-like features, without Java’s penalties

Defines an embedded standard interface embedded-hal

Apollo Guidance Computer

We choose to go to the moon

in this decade and do the other things, not because they are easy, but because they are hard, because that goal

will serve to organize and measure the best of our energies and skills, because that challenge is one that we are

willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

John F. Kennedy, Rice University, 1961

AGC

Frequency 2.048 MHz

World Length 15 + 1 bit

RAM 4096 B

Storage 72 KB

Software API AGC Assembly Language

This landed the moon eagle.

August 1966

DSKY

Simulator

Display and keyboards

https://svtsim.com/moonjs/agc.html

What is a microprocessor?

Microcontroller (MCU)

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System

costs $0.1 - $25

annual demand is billions

Microprocessor (CPU)

high operating frequency (GHz)

limited number of I/O ports

usually requires an Operating System

costs $75 - $500

annual demand is tens of millions

Integrated in embedded systems for certain tasks General purpose, for PC & workstations

How a microprocessor works

Registers

r0

r1

r2

Processor

Memory Read/Write

Processing

add

sub

and

mov load store

Memory

word 0

word 1

word 2

LED controller

 Clock

This is a simple processor

8 bit processor

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

a simple 8 bit processor with a text display

Programming

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

Assembly

in Rust

1 use eight_bit_processor::print;

2

3 static hello: &str = "Hello World!";

4

5 #[start]

6 fn start() {

7 print(hello);

8 }

1 JMP start

2 hello: DB "Hello World!" ; Variable

3 DB 0 ; String terminator

4 start:

5 MOV C, hello ; Point to var

6 MOV D, 232 ; Point to output

7 CALL print

8 HLT ; Stop execution

9 print: ; print(C:*from, D:*to)

10 PUSH A

11 PUSH B

12 MOV B, 0

13 .loop:

14 MOV A, [C] ; Get char from var

15 MOV [D], A ; Write to output

16 INC C

17 INC D

18 CMP B, [C] ; Check if end

19 JNZ .loop ; jump if not

20

21 POP B

22 POP A

23 RET

Demo
Start

a working example for the previous code

https://schweigi.github.io/assembler-simulator/

Real World Microcontrollers
Intel / AVR / PIC / TriCore / ARM Cortex-M / RISC-V rv32i(a)mc

Bibliography

Joseph Yiu, The Definitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, 2nd Edition

Chapter 1 - Introduction

Chapter 2 - Technical Overview

for this section

Intel

Vendor Intel

ISA 8051, 8051

Word 8 bit

Frequency a few MHz

Storage ?

Variants 8048, 8051

AVR

Authors Alf-Egil Bogen and Vegard Wollan

Vendor Microchip (Atmel)

ISA AVR

Word 8 bit

Frequency 1 - 20 MHz

Storage 4 - 256 KB

Variants ATmega, ATtiny

Board

probably Alf and Vegard’s RISC processor

PIC

Vendor Microchip

ISA PIC

Word 8 - 32

Frequency 1 - 20 MHz

Storage 256 B - 64 KB

Variants PIC10, PIC12, PIC16, PIC18, PIC24, PIC32

Peripheral Interface Controller / Programmable Intelligent Computer

TriCore

Vendor Infineon

ISA AURIX32

Word 32 bit

Frequency hundreds of MHz

Storage a few MB

Variants TC2xx, TC3xx, TC4xx

ARM Cortex-M

Vendor
Qualcomm, NXP, Nordic Semiconductor,

Broadcom, Raspberry Pi

ISA

ARMv6-M (Thumb and some Thumb-2)

ARMv7-M (Thumb and Thumb-2)

ARMv8-M (Thumb and Thumb-2)

Word 32

Frequency 1 - 900 MHz

Storage up to a few MB

Variants M0, M0+, M3, M4, M7, M23, M33

Advanced RISC Machine

ARM Cortex-M
Instruction Set

Fun Facts

M0/M0+ has no div

M0 - M3 have no floating point

M23 and M33 have security

extensions

what the MCU can do

RISC-V rv32i(a)mc

Authors University of California, Berkeley

Vendor Espressif System

ISA rv32i(a)mc

Word 32 bit

Frequency 1 - 200 MHz

Storage 4 - 256 KB

Variants rv32imc, rv32iamc

Fifth generation of RISC ISA

RP2040
ARM Cortex-M0+, built by Raspberry Pi

Bibliography

Raspberry Pi Ltd, RP2040 Datasheet

Chapter 1 - Introduction

Chapter 2 - System Description

Section 2.1 - Bus Fabric

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

RP2040

Vendor Raspberry Pi

Variant ARM Cortex-M0+

ISA ARMv6-M (Thumb and some Thumb-2)

Cores 2

Word 32 bit

Frequency up to 133 MHz

RAM 264 KB

Boards

Raspberry Pi Pico (W)

Arduino Nano RP2040 Connect

the MCU that use RP2040

The Chip

GPIO: General Purpose Input/Output

SWD: Debug Protocol

DMA: Direct Memory Access

Peripherals

SIO Single Cycle I/O (implements GPIO)

PWM Pulse Width Modulation

ADC Analog to Digital Converter

(Q)SPI (Quad) Serial Peripheral Interface

UART Universal Async. Receiver/Transmitter

RTC Real Time Clock

I2C Inter-Integrated Circuit

PIO Programmable Input/Output

Pins
have multiple functions

The Bus
that interconnects the cores with the peripherals

STM32U545RE
ARM Cortex-M33, built by STMicroelectronics

Bibliography

STMicroelectronics, STM32U5 Reference Manual

Chapter 2 - Memory and bus architecture

Section 2.1 - System architecture

for this section

https://www.st.com/resource/en/reference_manual/rm0456-stm32u5-series-armbased-32bit-mcus-stmicroelectronics.pdf

STM32U545RE

Vendor STMicroelectronics

Variant ARM Cortex-M33

ISA ARMv8-M

Cores 1

Word 32 bit

Frequency up to 160 MHz

RAM 272 KB

Board

Nucleo U545RE-Q

the MCU that use STM32U545RE

The Chip Peripherals

Datasheet STM32U545RE

https://www.st.com/resource/en/datasheet/stm32u545re.pdf

Pins

...

have multiple functions

Lab Board

Nucleo U545RE-Q Slot / Board

4 buttons

5 LEDs

potentiometer

buzzer

photoresistor

I2C EEPROM

MPU-6500 accelerometer & Gyro

BMP 390 Pressure sensor

SPI LCD Display

SD Card Reader

servo connectors

stepper motor

Project

the hardware should not cost more than 150 RON

STM32 Nucleo F446RE or Nucleo U545RE-Q board (include debuggers)

Raspberry Pi Pico with a debugger

Raspberry Pi Pico 2W + Debug Probe Raspberry Pi Pico 2W + Raspberry Pi Pico 1

suggested hardware

https://www.st.com/en/evaluation-tools/nucleo-f446re.html
https://www.st.com/en/evaluation-tools/nucleo-u545re-q.html

Bitwise Ops
How to set and clear bits

Set bit

set the 1 on position bit of register

Set multiple bits

1 fn set_bit(register: usize, bit: u8) -> usize {

5 register | 1 << bit

6 }

2 // assume register is 0b1000, bit is 2

3 // 1 << 2 is 0b0100

4 // 0b1000 | 0b0100 is 0b1100

1 fn set_bits(register: usize, bits: usize) -> usize {

2 // assume register is 0b1000, bits is 0b0111

3 // 0b1000 | 0b0111 is 0b1111

4 register | bits

5 }

Clear bit

Set the 0 on position bit of register

Clear multiple bits

1 fn clear_bit(register: usize, bit: u8) -> usize {

6 register & !(1 << bit)

7 }

2 // assume register is 0b1100, bit is 2

3 // 1 << 2 is 0b0100

4 // !(1 << 2) is 0b1011

5 // 0b1100 & 0b1011 is 0b1000

1 fn clear_bits(register: usize, bits: usize) -> usize {

2 // assume register is 0b1111, bits is 0b0111

3 // !bits = 0b1000

4 // 0b1111 & 0b1000 is 0b1000

5 register & !bits

6 }

Flip bit

Flip the bit on position bit of register

Flip multiple bits

1 fn flip_bit(register: usize, bit: u8) -> usize {

5 register ^ 1 << bit

6 }

2 // assume register is 0b1100, bit is 2

3 // 1 << 2 is 0b0100

4 // 0b1100 ^ 0b0100 is 0b1000

1 fn flip_bits(register: usize, bits: usize) -> usize {

2 // assume register is 0b1000, bits is 0b0111

3 // 0b1000 ^ 0b0111 is 0b1111

4 register ^ bits

5 }

Let’s see a combined operation for value extraction

We presume an 32 bits ID = 0b1100_1010_1111_1100_0000_1111_0110_1101

And want to extract a portion 0b1100_1010_1111_1100_0000_1111_0110_1101

1 const MASK: u32 = 0b0000_0000_0000_0000_0000_1111_1111_1111;

2

3 fn print_binary(label: &str, num: u32) {

4 println!("{}: {:032b}", label, num);

5 }

6

7 fn main() {

8 let large_id: u32 = 0b1100_1010_1111_1100_0000_1111_0110_1101;

9 let extracted_bits = (large_id >> 20) & MASK;

10

11 // Print values in binary

12 print_binary("Original_", large_id);

13 print_binary("Mask_____", MASK);

14 print_binary("Extracted", extracted_bits);

15 }

16 /* RESULT

17 Original_: 11001010111111000000111101101101

18 Mask_____: 00000000000000000000111111111111

19 Extracted: 00000000000000000000110010101111 */

With nice formating

1 const MASK: u32 = 0b0000_0000_0000_0000_0000_1111_1111_1111;

2 fn format_binary(num: u32) -> String {

3 (0..32).rev()

4 .map(|i| {

5 if i != 0 && i % 4 == 0 {

6 format!("{}_", (num >> i) & 1)

7 } else {

8 format!("{}", (num >> i) & 1)

9 }

10 })

11 .collect::<Vec<_>>()

12 .join("")

13 }

14 fn print_binary(label: &str, num: u32) { println!("{}: {}", label, format_binary(num));}

15 fn main() {

16 let large_id: u32 = 0b1100_1010_1111_1100_0000_1111_0110_1101;

17 let extracted_bits = (large_id >> 20) & MASK;

18 print_binary("Original_", large_id);

19 print_binary("Extracted", extracted_bits);

20 }

21 /* RESULTS:

22 Original_: 1100_1010_1111_1100_0000_1111_0110_1101

23 Extracted: 0000_0000_0000_0000_0000_1100_1010_1111 */

Conclusion

How a processor functions

Microcontrollers (MCU) / Microprocessors (CPU)

Microcontroller architectures

ARM Cortex-M

RP2040 and STM32U545RE

we talked about

