
Copyright © Wyliodrin SRL 2024, licensed under CC BY-SA 4.0.

Introduction
Lecture 1

https://wyliodrin.com/

Welcome

You will learn
how hardware works

how to actually build your own hardware device

the Rust programming Language

We expect
to come to class

ask a lot of questions

to the Microprocessor Architecture engineering class

Team

Our team
Lectures

Alexandru Radovici

Labs
Irina Niță

Irina Bradu

Teodor Dicu

Andrei Zam�r

Dănuț Aldea

Teodora Miu

Outline
Lectures

12 lectures

1 Q&A lecture for the project

Labs
12 labs

Project
Build a hardware device running software written

in Rust

The cost for the hardware is around 150 RON

Presented at PM Fair during the last week of the

semester

Grading
Part Description Points

Lecture
tests

You will have a test at every class with subjects from the previous class. 2p

Lab Your work at every lab will be graded. 2p

Project
You will have to design and implement a hardware device. Grading will be done for the
documentation, hardware design and software development.

5p

Exam You will have to take an exam during the session. 2p

Total You will need at least 4.5 points to pass the subject. 11p

http://localhost:12445/docs/category/lecture
http://localhost:12445/docs/category/lab
http://localhost:12445/docs/project

Subjects

Theory
How a microprocessor works

How the ARM Cortex-M processor works

Using digital signals to control devices

Using analog signals to read data from sensors

How interrupts work

How asynchronous programming works (async/await)

How embedded operating systems work

Practical
How to use the Raspberry Pi Pico

Affordable

Powerful processor

Good documentation

How to program in Rust

Memory Safe

Java-like features, without Java’s penalties

De�nes an embedded standard interface embedded-hal

Apollo Guidance Computer

We choose to go to the moon

in this decade and do the other things, not because they are easy, but because they are hard, because that
goal will serve to organize and measure the best of our energies and skills, because that challenge is one
that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others,
too.

John F. Kennedy, Rice University, 1961

AGC

Frequency 2.048 MHz

World Length 15 + 1 bit

RAM 4096 B

Storage 72 KB

Software API AGC Assembly Language

This landed the moon eagle.

August 1966

DSKY

Simulator

Display and keyboard

https://svtsim.com/moonjs/agc.html

What is a microprocessor?

Microcontroller (MCU)

low operating frequency (MHz)

a lot of I/O ports

controls hardware

does not require an Operating System

costs $0.1 - $25

annual demand is billions

Integrated in embedded systems for certain tasks

Microprocessor (CPU)

high operating frequency (GHz)

limited number of I/O ports

usually requires an Operating System

costs $75 - $500

annual demand is tens of millions

General purpose, for PC & workstations

How a microprocessor (MCU) works

Registers

r0

r1

r2

Processor

Memory Read/Write

Processing

add

sub

and

mov load store

Memory

word 0

word 1

word 2

LED controller

 Clock

This is a simple processor

8 bit processor

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

a simple 8 bit processor with a text display

Programming

Registers

A

B

C

D

Simple 8-bit Processor

Memory Read/Write

Processing

add

sub

and

mov
byte 255

byte 232

LCD Allocated

byte 2

byte 0

byte 1

Memory

LCD controller

 Clock

in Rust

1 use eight_bit_processor::print;

2

3 static hello: &str = "Hello World!";

4

5 #[start]

6 fn start() {

7 print(hello);

8 }

Assembly
1 JMP start

2 hello: DB "Hello World!" ; Variable

3 DB 0 ; String terminator

4 start:

5 MOV C, hello ; Point to var

6 MOV D, 232 ; Point to output

7 CALL print

8 HLT ; Stop execution

9 print: ; print(C:*from, D:*to)

10 PUSH A

11 PUSH B

12 MOV B, 0

13 .loop:

14 MOV A, [C] ; Get char from var

15 MOV [D], A ; Write to output

16 INC C

17 INC D

18 CMP B, [C] ; Check if end

19 JNZ .loop ; jump if not

20

21 POP B

22 POP A

23 RET

Demo
Start

a working example for the previous code

https://schweigi.github.io/assembler-simulator/

Real Word Microcontrollers
Intel / AVR / PIC / TriCore / ARM Cortex-M / RISC-V rv32i(a)mc

Bibliography

Joseph Yiu, The De�nitive Guide to ARM® Cortex®-M0 and Cortex-M0+ Processors, 2nd Edition

Chapter 1 - Introduction

Chapter 2 - Technical Overview

for this section

Intel

Vendor Intel

ISA 8051, 8051

Word 8 bit

Frequency a few MHz

Storage ?

Variants 8048, 8051

AVR

Authors Alf-Egil Bogen and Vegard Wollan

Vendor Microchip (Atmel)

ISA AVR

Word 8 bit

Frequency 1 - 20 MHz

Storage 4 - 256 KB

Variants ATmega, ATtiny

Board

probably Alf and Vegard’s RISC processor

PIC

Vendor Microchip

ISA PIC

Word 8 - 32

Frequency 1 - 20 MHz

Storage 256 B - 64 KB

Variants
PIC10, PIC12, PIC16, PIC18, PIC24,
PIC32

Peripheral Interface Controller / Programmable Intelligent Computer

TriCore

Vendor In�neon

ISA AURIX32

Word 32 bit

Frequency hundreds of MHz

Storage a few MB

Variants TC2xx, TC3xx, TC4xx

ARM Cortex-M

Vendor
Qualcomm, NXP, Nordic
Semiconductor, Broadcom, Raspberry
Pi

ISA
ARMv6-M (Thumb and some Thumb-
2) ARMv7-M (Thumb and Thumb-2)

Word 32

Frequency 1 - 900 MHz

Storage up to a few MB

Variants M0, M0+, M3, M4, M7, M33

Advanced RISC Machine

RISC-V rv32i(a)mc

Authors University of California, Berkeley

Vendor Espressif System

ISA rv32i(a)mc

Word 32 bit

Frequency 1 - 200 MHz

Storage 4 - 256 KB

Variants rv32imc, rv32iamc

Fifth generation of RISC ISA

RP2040
ARM Cortex-M0+, built by Raspberry Pi

Bibliography

Raspberry Pi Ltd, RP2040 Datasheet

Chapter 1 - Introduction

Chapter 2 - System Description

Section 2.1 - Bus Fabric

for this section

https://datasheets.raspberrypi.com/rp2040/rp2040-datasheet.pdf

RP2040

Vendor Raspberry PI

Variant ARM Cortex-M0+

ISA ARMv6-M (Thumb and some Thumb-2)

Cores 2

Word 32 bit

Frequency up to 133 MHz

RAM 264 KB

Storage N/A (external only)

the MCU

Boards

Raspberry Pi Pico (W)

Arduino Nano RP2040 Connect

that use RP2040

The Chip

GPIO: General Purpose Input/Output
SWD: Debug Protocol
DMA: Direct Memory Access

Peripherals

SIO Single Cycle Input/Output

PWM Pulse With Modulation

ADC Analog to Digital Converter

(Q)SPI (Quad) Serial Peripheral Interface

UART Universal Async. Receiver/Transmitter

RTC Real Time Clock

I2C Inter-Integrated Circuit

PIO Programmable Input/Output

Pins
have multiple functions

The Bus
that interconnects the cores with the peripherals

Conclusion

How a processor functions

Microcontrollers (MCU) / Microprocessors (CPU)

Microcontroller architectures

ARM Cortex-M

RP2040

we talked about

